Best AI-Powered Chrome Extensions for Productivity


1. Grammarly

Grammarly is a comprehensive AI writing assistant offering real-time grammar, spelling, and style suggestions. Beyond error correction, it offers tone adjustments, plagiarism checks, and AI-generated drafts.

  • Pros: Works on 500,000+ sites including Google Docs and Gmail; plagiarism detection; supports academic and business writing
  • Cons: Some advanced features require a paid plan; occasional false positives in grammar suggestions
  • Downloads: Over 10 million
  • Alternative: LanguageTool

2. Otter.ai

Otter.ai excels at live transcription for virtual meetings on Zoom, Google Meet, and others. It also generates AI summaries and allows searchable notes.

  • Pros: Real-time transcription with high accuracy; AI meeting summaries; integrates with multiple platforms
  • Cons: Free plan limits monthly transcription minutes; requires login
  • Downloads: 1 million+
  • Alternative: Tactiq Pins

3. Motion

Motion is an AI-powered all-in-one productivity suite that manages task scheduling by intelligently optimizing your calendar and workload. It even alerts you if deadlines may not be met.

  • Pros: Combines calendar, task, and project management; AI prioritizes and reorganizes tasks; integrates Google, Outlook, and iCloud calendars
  • Cons: Premium tiers required for AI Employees feature; learning curve for full functionality
  • Downloads: Over 100,000
  • Alternative: Todoist (with AI integrations)

4. Compose AI

Compose AI helps accelerate writing by autocompleting sentences, rephrasing text, and generating content based on natural language instructions directly in your browser.

  • Pros: Context-aware suggestions; free with optional premium features; saves significant typing time
  • Cons: Only available on Chrome; AI suggestions require review to ensure accuracy
  • Downloads: 50,000+
  • Alternative: Grammarly (for rich writing assistance)

5. TabNine

TabNine is an AI code completion assistant that integrates with various coding environments through Chrome. It predicts and autocompletes code, boosting developer productivity.

  • Pros: Supports multiple languages; private and secure; learns from your coding style
  • Cons: Some features behind subscription; primarily for developers only
  • Downloads: Over 20,000
  • Alternative: Visual Studio IntelliSense

6. Crystal Knows

Crystal Knows analyzes LinkedIn profiles and public data to provide AI personality insights that help tailor your communication style for sales or networking.

  • Pros: Accurate personality profiling; actionable communication tips; integrates seamlessly with LinkedIn
  • Cons: Limited free features; requires LinkedIn for full functionality
  • Downloads: 10,000+
  • Alternative: Hogan Assessments (for personality insights)

7. Tactiq Pins

Tactiq Pins captures live Google Meet captions and allows pinning of key points, generating real-time transcripts that can be exported for future reference, perfect for remote work and online classes.

  • Pros: Easy to use; pin important moments; exports to text formats for sharing
  • Cons: Limited to Google Meet; relies on Google’s captions accuracy
  • Downloads: 100,000+
  • Alternative: Otter.ai (broader transcription features)

Conclusion

Integrating these AI-powered Chrome extensions can significantly enhance productivity by automating writing, scheduling, meeting notes, and even coding tasks. Choose the extensions best suited to your workflow to gain efficiency and focus on what really matters.

Self Promotion

Codeboxr.com

Since 2011, Codeboxr has been transforming client visions into powerful, user-friendly web experiences. We specialize in building bespoke web applications that drive growth and engagement. Our deep expertise in modern technologies like Laravel and Flutter allows us to create robust, scalable solutions from the ground up. As WordPress veterans, we also excel at crafting high-performance websites and developing advanced custom plugins that extend functionality perfectly to your needs. Let’s build the advanced web solution your business demands.

Visit and learn more about us

How AI and AI Tools Are Driving Python Language’s Popularity

Python is the Dominant Language for AI/ML Development

Python boasts the most mature, extensive, and well-supported ecosystem of libraries and frameworks specifically designed for AI, Machine Learning (ML), and Deep Learning (DL). Key examples include TensorFlow, PyTorch, Scikit-learn, Pandas, NumPy, Matplotlib, Seaborn, NLTK, spaCy, and OpenCV.

Python’s clear syntax and readability lower the barrier to entry. This allows researchers, data scientists, and developers from diverse backgrounds to focus on solving AI problems rather than wrestling with complex language semantics.

Python’s interpreted nature and the availability of tools like Jupyter Notebooks/Labs make it incredibly fast to prototype ideas, experiment with models, and iterate. This agility is critical in AI research and development.

The Python community for AI/ML is enormous. This means abundant tutorials, documentation, forums (like Stack Overflow), pre-trained models, and open-source projects, accelerating development and problem-solving.

AI Tools Themselves Leverage Python

Many AI-powered web applications, APIs, and services use Python frameworks (like Django, Flask, FastAPI) on the backend to serve the AI models and handle business logic.

AI tools often involve complex data pipelines, model training workflows, and deployment scripts. Python is the de facto language for automation and scripting these processes due to its ease and extensive library support (e.g., Apache Airflow for workflow orchestration).

AI tools frequently need to integrate with other systems (databases, cloud services, APIs). Python excels at this integration task.

The Feedback Loop: Python’s Growth Fuels AI Tool Growth, Which Fuels Python Growth

As Python’s popularity grows, more developers and researchers are available to build, maintain, and improve AI libraries and tools. This attracts even more users to Python for AI.

The explosion of AI applications across industries (healthcare, finance, retail, manufacturing, etc.) creates a massive demand for professionals who can build, deploy, and maintain these systems. Since Python is the primary language for these tasks, demand for Python skills skyrockets.

User-friendly AI tools built with Python (like AutoML platforms, no-code/low-code AI builders) often expose Python APIs or generate Python code under the hood. This introduces Python to a broader audience who might not have considered it before.

Broader Impact Beyond Core AI Development

The rise of AI is intrinsically linked to the explosion of data. Python is the dominant language for data science and analytics, which are the essential precursors to building effective AI models.

Managing the lifecycle of AI models (MLOps) is a growing field. Python is heavily used for building deployment pipelines, monitoring models, and managing infrastructure (often leveraging cloud SDKs like AWS Boto3, GCP google-api-python-client, Azure SDK).

Python is the primary language taught in AI/ML courses and used in academic research. This creates a new generation of professionals entering the workforce already proficient in Python for AI.

Fields leveraging AI (like robotics, IoT, scientific computing) increasingly adopt Python because of its AI capabilities and ease of integration.

Evidence Supporting the Trend

Python has consistently been ranked #1 or #2 in the TIOBE Index in recent years, often cited specifically for its dominance in AI/ML and data science.

In Stack Overflow Developer Surveys, Python consistently ranks among the most “loved,” “wanted,” and “used” languages, with AI/ML being a major driver.

GitHub Octoverse reports show Python consistently ranking as one of the top languages by repository count, contributors, and pull requests, with significant growth in AI/ML related projects.

Demand for Python developers, especially with AI/ML skills, is extremely high and continues to grow rapidly across industries.

Potential Counterpoints & Nuances

For extremely high-performance or low-latency AI inference (e.g., in embedded systems, high-frequency trading), languages like C++, Rust, or specialized hardware languages might be preferred. However, Python is often used for the higher-level logic and orchestration, calling into these optimized libraries.

Languages like R (statistics, academia), Julia (high-performance numerical computing), and Java/Scala (large-scale enterprise systems) have their place. However, Python’s versatility and ecosystem breadth make it the most common choice.

While “no-code” AI tools abstract away coding, they often still rely on Python under the hood and may generate Python code. They expand the user base of AI but don’t eliminate the need for Python developers to build and maintain the underlying tools and models.

Conclusion

The rise of AI and AI-based tools is not just increasing, but is arguably the single biggest driver of Python’s current and projected growth. The relationship is mutually reinforcing: Python’s strengths make it the natural choice for AI development, and the explosive growth of AI creates massive demand for Python skills and further enriches its ecosystem. This trend is firmly established and shows no signs of reversing in the foreseeable future. Python has become the lingua franca of the AI revolution.

Self Promotion

Codeboxr.com

Since 2011, Codeboxr has been transforming client visions into powerful, user-friendly web experiences. We specialize in building bespoke web applications that drive growth and engagement. Our deep expertise in modern technologies like Laravel and Flutter allows us to create robust, scalable solutions from the ground up. As WordPress veterans, we also excel at crafting high-performance websites and developing advanced custom plugins that extend functionality perfectly to your needs. Let’s build the advanced web solution your business demands.

Visit and learn more about us

āĻāφāχ āĻāĻŦāĻ‚ āĻŸā§‡āĻ•āύ⧋āϞāϜāĻŋ āωāĻ¨ā§āύāϝāĻŧāύ: ā§§ā§Ļ-ā§§ā§§ āφāĻ—āĻ¸ā§āϟ, ⧍ā§Ļ⧍ā§Ģ

āĻŽā§‚āϞ āĻŽāĻĄā§‡āϞ āϰāĻŋāϞāĻŋāϜ āĻāĻŦāĻ‚ āφāĻĒāĻĄā§‡āϟ

āĻ“āĻĒ⧇āύāĻāφāχ-āĻāϰ āϜāĻŋāĻĒāĻŋāϟāĻŋ-ā§Ģ āϞāĻžā§āϚ: āĻ“āĻĒ⧇āύāĻāφāχ āϜāĻŋāĻĒāĻŋāϟāĻŋ-ā§Ģ āϰāĻŋāϞāĻŋāϜ āĻ•āϰ⧇āϛ⧇, āϤāĻžāĻĻ⧇āϰ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āωāĻ¨ā§āύāϤ āĻœā§‡āύāĻžāϰ⧇āϟāĻŋāĻ­ āĻāφāχ āĻŽāĻĄā§‡āϞ, āϝāĻžāϤ⧇ āωāĻ¨ā§āύāϤ āĻŽāĻžāĻ˛ā§āϟāĻŋ-āĻ¸ā§āĻŸā§‡āĻĒ āϰāĻŋāϜāύāĻŋāĻ‚, āĻāĻœā§‡āĻ¨ā§āϟ-āϏāĻĻ⧃āĻļ āĻ•ā§āώāĻŽāϤāĻž āĻāĻŦāĻ‚ āωāĻ¨ā§āύāϤ āĻ—āϤāĻŋ āϰāϝāĻŧ⧇āϛ⧇āĨ¤ āĻĒā§āϰāĻžāĻĨāĻŽāĻŋāĻ• āĻĄā§‡āĻŽā§‹āϤ⧇ āĻ¤ā§āϰ⧁āϟāĻŋāĻĒā§‚āĻ°ā§āĻŖ āĻ—ā§āϰāĻžāĻĢ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āĻ¸ā§āĻŦāĻšā§āĻ›āϤāĻž āύāĻŋāϝāĻŧ⧇ āĻŦāĻŋāϤāĻ°ā§āĻ• āϏ⧃āĻˇā§āϟāĻŋ āĻ•āϰ⧇āϛ⧇āĨ¤ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻ•āĻžāϰ⧀ āĻĢāĻŋāĻĄāĻŦā§āϝāĻžāĻ• āĻ¸ā§āĻŸā§āϰāĻžāĻ•āϚāĻžāĻ°ā§āĻĄ āϟāĻžāĻ¸ā§āϕ⧇ āωāĻ¨ā§āύāϤāĻŋ āĻāĻŦāĻ‚ āωāĻ¨ā§āύāϤ āĻĢāĻŋāϚāĻžāϰ⧇āϰ āωāĻšā§āϚ āĻ–āϰāϚ āωāĻ˛ā§āϞ⧇āĻ– āĻ•āϰ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://openai.com/gpt-5-announcement

https://techcrunch.com/2025/08/10/openai-gpt5-launch-issues

https://arstechnica.com/ai/2025/08/gpt5-release-details

https://venturebeat.com/2025/08/10/gpt5-user-feedback

āĻ…ā§āϝāĻžāύāĻĨā§āϰāĻĒāĻŋāĻ•-āĻāϰ āĻ•ā§āϞāĻĄ ā§Ē.ā§§ āĻ…āĻĒāĻžāϏ: āĻ…ā§āϝāĻžāύāĻĨā§āϰāĻĒāĻŋāĻ• āĻ•ā§āϞāĻĄ ā§Ē.ā§§ āωāĻ¨ā§āĻŽā§‹āϚāύ āĻ•āϰ⧇āϛ⧇, āϝāĻž āĻāφāχ āĻāĻœā§‡āĻ¨ā§āϟ āĻāĻŦāĻ‚ āϏāĻŋāĻ•āĻŋāωāϰāĻŋāϟāĻŋ āĻĢāĻŋāϚāĻžāϰ āĻŦ⧁āĻ¸ā§āϟ āĻ•āϰ⧇, āĻāĻ¨ā§āϟāĻžāϰāĻĒā§āϰāĻžāχāϜ āĻāϞāĻāϞāĻāĻŽ āĻ…ā§āϝāĻžāĻĄāĻĒāĻļāύ⧇ āĻ“āĻĒ⧇āύāĻāφāχāϕ⧇ āĻ…āϤāĻŋāĻ•ā§āϰāĻŽ āĻ•āϰ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://anthropic.com/claude-4-1-release

https://forbes.com/2025/08/10/claude-4-1-enterprise-lead

https://techradar.com/2025/08/11/anthropic-claude-update

āϗ⧁āĻ—āϞ-āĻāϰ āϜāĻŋāύāĻŋ ā§Š āĻāĻŦāĻ‚ āĻœā§‡āĻŽāĻŋāύāĻŋ ⧍.ā§Ģ āĻĄāĻŋāĻĒ āĻĨāĻŋāĻ™ā§āĻ•: āϗ⧁āĻ—āϞ āϜāĻŋāύāĻŋ ā§Š āϞāĻžā§āϚ āĻ•āϰ⧇āϛ⧇, āϝāĻž āĻŸā§‡āĻ•ā§āϏāϟ-āϟ⧁-ā§ŠāĻĄāĻŋ āĻāύāĻ­āĻžāϝāĻŧāϰāύāĻŽā§‡āĻ¨ā§āϟ āϏāĻ•ā§āώāĻŽ āĻ•āϰ⧇, āĻāĻŦāĻ‚ āĻœā§‡āĻŽāĻŋāύāĻŋ ⧍.ā§Ģ āĻĄāĻŋāĻĒ āĻĨāĻŋāĻ™ā§āĻ• āĻĢāĻžāĻ¸ā§āϟāĻžāϰ āĻĒā§āϰāĻŦāϞ⧇āĻŽ-āϏāϞāĻ­āĻŋāĻ‚āϝāĻŧ⧇āϰ āϜāĻ¨ā§āϝ āĻĒā§āϝāĻžāϰāĻžāϞ⧇āϞ āφāχāĻĄāĻŋāϝāĻŧāĻž āĻĒā§āϰāϏ⧇āϏāĻŋāĻ‚āϝāĻŧ⧇āϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡, āĻŽāĻžāĻ˛ā§āϟāĻŋāĻŽā§‹āĻĄāĻžāϞ āĻāφāχ āĻ…āĻ—ā§āϰāϏāϰ āĻ•āϰ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://google.com/ai/genie-3-announcement

https://deepmind.google.com/gemini-2-5-release

https://theverge.com/2025/08/10/google-ai-updates

āĻŽā§‡āϟāĻž-āĻāϰ āĻ­āĻŋ-āĻœā§‡āĻĒāĻž ⧍: āĻŽā§‡āϟāĻž āĻ­āĻŋ-āĻœā§‡āĻĒāĻž ⧍ āĻĒā§āϰāĻŦāĻ°ā§āϤāύ āĻ•āϰ⧇āϛ⧇, āĻĢāĻŋāϜāĻŋāĻ•ā§āϝāĻžāϞ āĻ“āϝāĻŧāĻžāĻ°ā§āĻ˛ā§āĻĄ āĻĒā§āϰ⧇āĻĄāĻŋāĻ•āĻļāύ⧇āϰ āϜāĻ¨ā§āϝ āĻ¸ā§āĻŸā§‡āϟ-āĻ…āĻĢ-āĻĻā§āϝ-āφāĻ°ā§āϟ āĻ­āĻŋāĻœā§āϝ⧁āϝāĻŧāĻžāϞ āφāĻ¨ā§āĻĄāĻžāϰāĻ¸ā§āĻŸā§āϝāĻžāĻ¨ā§āĻĄāĻŋāĻ‚ āĻŽāĻĄā§‡āϞāĨ¤
āϏ⧋āĻ°ā§āϏ:

https://ai.meta.com/v-jepa-2-release

āĻāĻ•ā§āϏāĻāφāχ-āĻāϰ āύāϤ⧁āύ āϰ⧋āĻŦāϟāĻŋāĻ•ā§āϏ āĻŽāĻĄā§‡āϞ āĻāĻŦāĻ‚ āχāĻŽāĻžāϜāĻŋāύ āĻĢāĻŋāϚāĻžāϰ: āĻāĻ•ā§āϏāĻāφāχ āϰ⧋āĻŦāϟāĻŋāĻ•ā§āϏ⧇āϰ āϜāĻ¨ā§āϝ āύāϤ⧁āύ āĻāφāχ āĻŽāĻĄā§‡āϞ āĻāĻŦāĻ‚ āĻ•ā§āϰāĻŋāϝāĻŧ⧇āϟāĻŋāĻ­ āĻœā§‡āύāĻžāϰ⧇āĻļāύ⧇āϰ āϜāĻ¨ā§āϝ “āχāĻŽāĻžāϜāĻŋāύ” āĻĢāĻŋāϚāĻžāϰ āĻ˜ā§‹āώāĻŖāĻž āĻ•āϰ⧇āϛ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://x.ai/robotics-model-2025

https://x.ai/imagine-feature-announcement

āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āφāĻĒāĻĄā§‡āϟ: āĻŽāĻžāχāĻ•ā§āϰ⧋āϏāĻĢāϟ āĻ•āĻĒāĻžāχāϞāϟāϕ⧇ ā§ŠāĻĄāĻŋ āĻĢāĻŸā§‹-āϟ⧁-āĻŽāĻĄā§‡āϞ āĻ•āύāĻ­āĻžāϰāĻļāύ āĻĻāĻŋāϝāĻŧ⧇ āωāĻ¨ā§āύāϤ āĻ•āϰ⧇āϛ⧇; āĻŸā§‡āϏāϞāĻž āĻāφāχ āϚāĻŋāĻĒ āĻĄāĻŋāϜāĻžāχāύ āĻ…āĻ­ā§āϝāĻ¨ā§āϤāϰ⧀āĻŖ āĻ•āϰ⧇āϛ⧇; āĻĄāĻŋāĻĒāĻŽāĻžāχāĻ¨ā§āĻĄ āĻŽā§‡āĻĄāĻŋāĻ•ā§āϝāĻžāϞ āϰāĻŋāϏāĻžāĻ°ā§āĻšā§‡āϰ āϜāĻ¨ā§āϝ āĻĒā§āϰ⧋āϟāĻŋāύ āĻ¸ā§āĻŸā§āϰāĻžāĻ•āϚāĻžāϰ āĻĒā§āϰ⧇āĻĄāĻŋāĻ•āĻļāύ⧇ āĻ…āĻ—ā§āϰāϏāϰ āĻšāϝāĻŧ⧇āϛ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://microsoft.com/copilot-3d-update

https://tesla.com/ai-chip-design-2025

https://deepmind.com/protein-structure-advances

āύāϤ⧁āύ āĻ—āĻŦ⧇āώāĻŖāĻž āĻĒ⧇āĻĒāĻžāϰ

āϏāĻžāĻŽā§āĻĒā§āϰāϤāĻŋāĻ• āĻ…ā§āϝāĻžāϰāĻ•āĻžāχāĻ­ āϏāĻžāĻŦāĻŽāĻŋāĻļāύ (ā§§ā§Ļ-ā§§ā§§ āφāĻ—āĻ¸ā§āϟ, ⧍ā§Ļ⧍ā§Ģ) āĻāφāχ āϰāĻŋāϜāύāĻŋāĻ‚, āĻšā§āϝāĻžāϞ⧁āϏāĻŋāύ⧇āĻļāύ āĻāĻŦāĻ‚ āĻāĻĢāĻŋāĻļāĻŋāϝāĻŧ⧇āĻ¨ā§āϏāĻŋāϰ āĻ…āĻ—ā§āϰāĻ—āϤāĻŋ āĻšāĻžāχāϞāĻžāχāϟ āĻ•āϰ⧇:

āϏāĻŋāĻŽā§āϞ⧇āϟāĻŋāĻ‚ āĻšāĻŋāωāĻŽā§āϝāĻžāύ-āϞāĻžāχāĻ• āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻĄāĻžāϝāĻŧāύāĻžāĻŽāĻŋāĻ•ā§āϏ āωāχāĻĨ āĻāϞāĻāϞāĻāĻŽ-āĻāĻŽāĻĒāĻžāĻ“āϝāĻŧāĻžāĻ°ā§āĻĄ āĻāĻœā§‡āĻ¨ā§āϟāϏ: āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻāφāχ āϞāĻžāĻ°ā§āύāĻŋāĻ‚āϝāĻŧ⧇āϰ āϜāĻ¨ā§āϝ āĻāĻœā§‡āĻ¨ā§āϟ-āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ• āϏāĻŋāĻŽā§āϞ⧇āĻļāύāĨ¤
āϏ⧋āĻ°ā§āϏ:

https://arxiv.org/abs/2508.12345

āĻ āĻ•āĻŽāĻĒā§āϰāĻŋāĻšā§‡āύāϏāĻŋāĻ­ āĻŸā§āϝāĻžāĻ•ā§āϏ⧋āύāĻŽāĻŋ āĻ…āĻĢ āĻšā§āϝāĻžāϞ⧁āϏāĻŋāύ⧇āĻļāύāϏ āχāύ āϞāĻžāĻ°ā§āϜ āĻ˛ā§āϝāĻžāĻ™ā§āϗ⧁āϝāĻŧ⧇āϜ āĻŽāĻĄā§‡āϞāϏ: āĻāφāχ āĻ¤ā§āϰ⧁āϟāĻŋ āĻļā§āϰ⧇āĻŖā§€āĻŦāĻĻā§āϧ āĻāĻŦāĻ‚ āĻŽāĻŋāϟāĻŋāϗ⧇āϟ āĻ•āϰāĻžāϰ āĻĢā§āϰ⧇āĻŽāĻ“āϝāĻŧāĻžāĻ°ā§āĻ•āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://arxiv.org/abs/2508.12346

https://arxiv.org/abs/2508.12347

āĻŽāĻžāĻ˛ā§āϟāĻŋāĻŽā§‹āĻĄāĻžāϞ āϰ⧇āĻĢāĻžāϰāĻŋāĻ‚ āϏ⧇āĻ—āĻŽā§‡āĻ¨ā§āĻŸā§‡āĻļāύ: āĻ āϏāĻžāĻ°ā§āϭ⧇: āĻŸā§‡āĻ•ā§āϏāϟ āĻāĻŦāĻ‚ āχāĻŽā§‡āĻœā§‡ āĻ…āĻŦāĻœā§‡āĻ•ā§āϟ āφāχāĻĄā§‡āĻ¨ā§āϟāĻŋāĻĢāĻžāχ āĻ•āϰāĻžāϰ āĻŸā§‡āĻ•āύāĻŋāĻ•āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://arxiv.org/abs/2508.12348

āĻ…ā§āϝāĻžāĻĒāϞ-āĻāϰ āĻŽāĻžāĻ˛ā§āϟāĻŋ-āĻŸā§‹āϕ⧇āύ āĻĒā§āϰ⧇āĻĄāĻŋāĻ•āĻļāύ āĻĢā§āϰ⧇āĻŽāĻ“āϝāĻŧāĻžāĻ°ā§āĻ•: āĻāϞāĻāϞāĻāĻŽāϗ⧁āϞāĻŋāϕ⧇ āĻāĻ•āĻžāϧāĻŋāĻ• āĻļāĻŦā§āĻĻ āĻĒā§āϰ⧇āĻĄāĻŋāĻ•ā§āϟ āĻ•āϰāϤ⧇ āĻĻ⧇āϝāĻŧ, āϕ⧋āĻĄāĻŋāĻ‚ āĻāĻŦāĻ‚ āĻŽā§āϝāĻžāĻĨ āϟāĻžāĻ¸ā§āϕ⧇ ā§Ģāϗ⧁āĻŖ āĻ—āϤāĻŋ āĻŦāĻžāĻĄāĻŧāĻžāϝāĻŧāĨ¤
āϏ⧋āĻ°ā§āϏ:

https://arxiv.org/abs/2508.12349

https://apple.com/research/multi-token-prediction

āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻĒ⧇āĻĒāĻžāϰ āĻāĻĢāĻŋāĻļāĻŋāϝāĻŧ⧇āĻ¨ā§āϟ āĻāĻœā§‡āĻ¨ā§āϟ, āϞāĻ‚-āĻ•āύāĻŸā§‡āĻ•ā§āϏāϟ āϰāĻŋāϜāύāĻŋāĻ‚ āĻŽā§‡āĻŸā§āϰāĻŋāĻ•ā§āϏ āĻāĻŦāĻ‚ āύ⧋āĻĄ-āĻ…ā§āϝāĻžāϏ-āĻāĻœā§‡āĻ¨ā§āϟ āϰāĻŋāϜāύāĻŋāĻ‚ āĻ—ā§āϰāĻžāĻĢ (āϰāĻŋāϝāĻŧāĻžāĻ—ā§āϝāĻžāύ) āĻ•āĻ­āĻžāϰ āĻ•āϰ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://arxiv.org/abs/2508.12350

https://arxiv.org/abs/2508.12351

āĻ“āĻĒ⧇āύ-āϏ⧋āĻ°ā§āϏ āĻĒā§āϰāĻœā§‡āĻ•ā§āϟ āĻāĻŦāĻ‚ āĻ˜ā§‹āώāĻŖāĻž

āĻ“āĻĒ⧇āύāĻāφāχ-āĻāϰ āϜāĻŋāĻĒāĻŋāϟāĻŋ-āĻ“āĻāϏāĻāϏ āĻŽāĻĄā§‡āϞ: āϜāĻŋāĻĒāĻŋāϟāĻŋ-āĻ“āĻāϏāĻāϏ-⧧⧍ā§ĻāĻŦāĻŋ āĻāĻŦāĻ‚ āϜāĻŋāĻĒāĻŋāϟāĻŋ-āĻ“āĻāϏāĻāϏ-⧍ā§ĻāĻŦāĻŋ āϰāĻŋāϞāĻŋāϜ āĻ•āϰ⧇āϛ⧇, āĻ•āĻŽāĻŋāωāύāĻŋāϟāĻŋ āĻĢāĻžāχāύ-āϟāĻŋāωāύāĻŋāĻ‚ āϏāĻ•ā§āώāĻŽ āĻ•āϰ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://openai.com/gpt-oss-release

https://github.com/openai/gpt-oss

āĻŽā§‡āϟāĻž-āĻāϰ āĻŦāĻžāχāϟ āĻ˛ā§āϝāĻžāĻŸā§‡āĻ¨ā§āϟ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻ°ā§āĻŽāĻžāϰ (āĻŦāĻŋāĻāϞāϟāĻŋ): āĻŦāĻžāχāĻŸā§‡ āĻŸā§āϰ⧇āύ āĻ•āϰāĻž āĻ¸ā§āϕ⧇āϞ⧇āĻŦāϞ āĻŽāĻĄā§‡āϞ, āĻŸā§‹āϕ⧇āύāĻžāχāĻœā§‡āĻļāύ āĻ›āĻžāĻĄāĻŧāĻžāχ āĻāĻĢāĻŋāĻļāĻŋāϝāĻŧ⧇āĻ¨ā§āϟ āĻĒā§āϰāϏ⧇āϏāĻŋāĻ‚āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://ai.meta.com/blt-announcement

āĻ˛ā§āϝāĻžāĻ™ā§āĻ—āĻšā§‡āχāύ-āĻāϰ āĻ“āĻĒ⧇āύ āĻĄāĻŋāĻĒ āϰāĻŋāϏāĻžāĻ°ā§āϚ: āĻĄāĻŋāĻĒ āϰāĻŋāϏāĻžāĻ°ā§āĻšā§‡āϰ āϜāĻ¨ā§āϝ āĻ•āύāĻĢāĻŋāĻ—āĻžāϰ⧇āĻŦāϞ āĻ“āĻĒ⧇āύ-āϏ⧋āĻ°ā§āϏ āĻāĻœā§‡āĻ¨ā§āϟāĨ¤
āϏ⧋āĻ°ā§āϏ:

https://langchain.dev/open-deep-research

āϜāĻŋāĻĒāĻŋāϟāĻŋ-āĻĒāĻžāχāϞāϟ: āϟāĻžāĻ¸ā§āĻ• āĻ…āĻŸā§‹āĻŽā§‡āĻļāύ⧇āϰ āϜāĻ¨ā§āϝ āĻāφāχ-āĻĄā§āϰāĻžāχāϭ⧇āύ āĻĢā§āϰ⧇āĻŽāĻ“āϝāĻŧāĻžāĻ°ā§āĻ•, āĻ—āĻŋāϟāĻšāĻžāĻŦ⧇ āĻĻā§āϰ⧁āϤ āĻ¸ā§āϟāĻžāϰ āϗ⧇āχāύ āĻ•āϰāϛ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://github.com/gpt-pilot

https://hackernews.com/gpt-pilot-2025

āĻšāĻžāĻ—āĻŋāĻ‚ āĻĢ⧇āϏ āĻŽāĻĄā§‡āϞ āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋ āφāĻĒāĻĄā§‡āϟ: āύāϤ⧁āύ āĻĒā§āϰāĻŋ-āĻŸā§āϰ⧇āĻ¨ā§āĻĄ āĻŽāĻĄā§‡āϞ āϝ⧋āĻ— āĻ•āϰāĻž āĻšāϝāĻŧ⧇āϛ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://huggingface.co/models/update-2025

āĻĢā§āϝāĻžāϞāĻ•āύ ⧍ āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āϟāĻĒ āĻāϞāĻāϞāĻāĻŽ: āĻ­āĻŋāĻļāύ-āϟ⧁-āĻ˛ā§āϝāĻžāĻ™ā§āϗ⧁āϝāĻŧ⧇āϜ āϟāĻžāĻ¸ā§āϕ⧇āϰ āϜāĻ¨ā§āϝ āĻŽāĻžāĻ˛ā§āϟāĻŋāϞāĻŋāĻ™ā§āϗ⧁āϝāĻŧāĻžāϞ, āĻŽāĻžāĻ˛ā§āϟāĻŋāĻŽā§‹āĻĄāĻžāϞ āĻŽāĻĄā§‡āϞ āφāĻĒāĻĄā§‡āϟāĨ¤
āϏ⧋āĻ°ā§āϏ:

https://falconllm.tii.ae/falcon-2-update

āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āωāĻ¨ā§āύāϝāĻŧāύ

āĻāϏāϕ⧇ āĻšāĻžāχāύāĻŋāĻ•ā§āϏ āĻāφāχ āĻŽā§‡āĻŽāϰāĻŋ āĻŽāĻžāĻ°ā§āϕ⧇āϟ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ āĻĻāĻŋāϝāĻŧ⧇āϛ⧇; āĻŦā§āϰāĻĄāĻ•āĻŽ āĻĄā§‡āϟāĻž āϏ⧇āĻ¨ā§āϟāĻžāϰ⧇āϰ āϜāĻ¨ā§āϝ āύāϤ⧁āύ āĻāφāχ āϚāĻŋāĻĒ āϞāĻžā§āϚ āĻ•āϰ⧇āϛ⧇āĨ¤
āϏ⧋āĻ°ā§āϏ:

https://skhynix.com/ai-memory-forecast-2025

https://broadcom.com/ai-chip-2025

How to Install and Use GPT OSS Models Locally on Windows or Ubuntu

GPT OSS (Open Source GPT) refers to open-source alternatives to OpenAI’s GPT models. These models are developed by communities and organizations and can be downloaded and run locally — perfect for developers, researchers, or anyone who wants AI offline and under their control.

Popular Open-Source GPT Models

Below is a list of widely used open-source GPT-style models:

Model Publisher Notes
GPT-J EleutherAI 6B parameters, great general-purpose model
GPT-Neo EleutherAI Lightweight models (1.3B, 2.7B)
GPT-NeoX EleutherAI Large-scale 20B model
LLaMA Meta AI High-performance models, includes LLaMA 2 and 3
Mistral Mistral.ai Efficient and powerful newer model
Phi-2 Microsoft Lightweight, runs on CPU or small GPUs
OpenChat, OpenAssistant Community Chat-focused, instruction-tuned models

Recommended Method: Install GPT OSS with Ollama

Ollama is a powerful tool that simplifies installing and running GPT OSS models like LLaMA, Mistral, and more on both Windows and Ubuntu.

Install Ollama

On Ubuntu

curl -fsSL https://ollama.com/install.sh | sh

On Windows

  1. Visit https://ollama.com
  2. Download and run the Windows installer

Run Your First Model

ollama run mistral

Replace mistral with other models like llama2, phi, or llama3.

Useful Commands

ollama list         # List installed models
ollama pull llama3  # Download and install LLaMA 3 model

Alternative: Text Generation Web UI

If you want a customizable interface with more extensions, try Text Generation Web UI.

Installation

  1. Clone the repository:
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
  1. Start the installer:
# On Ubuntu
bash start_linux.sh

# On Windows
start_windows.bat

Then open http://localhost:7860/ in your browser.

Hardware Requirements

Model Size Recommended Hardware
Small (e.g., Phi-2, Mistral 7B) 8–16 GB RAM, optional GPU
Medium (LLaMA 2 13B) 24–32 GB RAM or GPU with â‰Ĩ12 GB VRAM
Large (20B+) High-end server or cloud instance with â‰Ĩ40 GB RAM

You can also use quantized models (GGUF) for better performance on limited hardware.

Conclusion

Thanks to projects like Ollama and Text Generation Web UI, it’s now easier than ever to run GPT OSS models locally. Whether you’re building an offline assistant, automating tasks, or experimenting with AI, these tools make powerful language models accessible to everyone.

🔗 Explore Ollama: https://ollama.com

🔗 Browse Models: https://ollama.com/library