āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āĻŖ āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€ āĻšāĻŋāĻ¨ā§āĻĻ⧁ āϧāĻ°ā§āĻŽā§‡āϰ āĻ…āĻ¨ā§āϝāϤāĻŽ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āĻ‰ā§ŽāϏāĻŦ

āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āĻŖ āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€ āĻšāĻŋāĻ¨ā§āĻĻ⧁ āϧāĻ°ā§āĻŽā§‡āϰ āĻ…āĻ¨ā§āϝāϤāĻŽ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āĻ‰ā§ŽāϏāĻŦāĨ¤ āĻāχ āĻĻāĻŋāύāϟāĻŋ āĻ­āĻ—āĻŦāĻžāύ āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āϪ⧇āϰ āφāĻŦāĻŋāĻ°ā§āĻ­āĻžāĻŦ āĻĻāĻŋāĻŦāϏ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻĒāĻžāϞāĻŋāϤ āĻšāϝāĻŧāĨ¤ āĻĒ⧁āϰāĻžāĻŖ āĻŽāϤ⧇, āĻĻā§āĻŦāĻžāĻĒāϰ āϝ⧁āϗ⧇āϰ āĻ…āĻˇā§āϟāĻŽ āĻĻāĻŋāύ⧇ āĻŽāĻĨ⧁āϰāĻžāϰ āĻ•āĻžāϰāĻžāĻ—āĻžāϰ⧇ āĻ•ā§ƒāĻˇā§āĻŖ āϜāĻ¨ā§āĻŽāĻ—ā§āϰāĻšāĻŖ āĻ•āϰ⧇āύ āĻ•āĻ‚āϏ⧇āϰ āĻ…āĻ¤ā§āϝāĻžāϚāĻžāϰ āĻĨ⧇āϕ⧇ āĻŽāĻžāύāĻŦāϜāĻžāϤāĻŋāϕ⧇ āϰāĻ•ā§āώāĻž āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝāĨ¤

āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āϪ⧇āϰ āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€ āĻšāĻŋāĻ¨ā§āĻĻ⧁ āĻ•ā§āϝāĻžāϞ⧇āĻ¨ā§āĻĄāĻžāϰ āĻ…āύ⧁āϝāĻžāϝāĻŧā§€ āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āϪ⧇āϰ āϜāĻ¨ā§āĻŽāĻĻāĻŋāύ āωāĻĻāϝāĻžāĻĒāύ āĻ•āϰāĻž āĻšāϝāĻŧ, āϝāĻŋāύāĻŋ āϐāϤāĻŋāĻšāĻžāϏāĻŋāĻ•āĻ­āĻžāĻŦ⧇ āĻĒā§āϰāĻžāϝāĻŧ ā§Ģā§Ļā§Ļā§Ļ āĻŦāĻ›āϰ āφāϗ⧇ (āĻ•ā§ƒāĻˇā§āϪ⧇āϰ āϜāĻ¨ā§āĻŽ āφāύ⧁āĻŽāĻžāύāĻŋāĻ•āĻ­āĻžāĻŦ⧇ āĻ–ā§āϰāĻŋāĻ¸ā§āϟāĻĒā§‚āĻ°ā§āĻŦ ā§Šā§¨ā§¨ā§Ž āϏāĻžāϞ⧇) āϜāĻ¨ā§āĻŽāĻ—ā§āϰāĻšāĻŖ āĻ•āϰ⧇āύ āĻŦāϞ⧇ āĻŦāĻŋāĻļā§āĻŦāĻžāϏ āĻ•āϰāĻž āĻšāϝāĻŧāĨ¤ ⧍ā§Ļ⧍ā§Ģ āϏāĻžāϞ⧇āϰ āĻšāĻŋāϏāĻžāĻŦ⧇, āĻāϟāĻŋ āϤāĻžāρāϰ āφāύ⧁āĻŽāĻžāύāĻŋāĻ• ā§Ģā§Ļ⧍ā§ĢāϤāĻŽ āϜāĻ¨ā§āĻŽāĻĻāĻŋāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āϤāĻŦ⧇, āĻāϟāĻŋ āϧāĻ°ā§āĻŽā§€āϝāĻŧ āĻ“ āĻĒ⧌āϰāĻžāĻŖāĻŋāĻ• āĻŦāĻŋāĻļā§āĻŦāĻžāϏ⧇āϰ āωāĻĒāϰ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āĻ•āϰ⧇ āĻšāĻŋāϏāĻžāĻŦ āĻ•āϰāĻž, āĻāĻŦāĻ‚ āϏāĻ āĻŋāĻ• āϤāĻžāϰāĻŋāĻ– āύāĻŋāϝāĻŧ⧇ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻŽāϤāĻžāĻŽāϤ āĻĨāĻžāĻ•āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤

āĻāχ āĻĻāĻŋāύ⧇ āĻ­āĻ•ā§āϤāϰāĻž āωāĻĒāĻŦāĻžāϏ āĻ•āϰ⧇āύ, āĻ—ā§€āϤāĻž āĻĒāĻžāĻ  āĻ•āϰ⧇āύ āĻāĻŦāĻ‚ āĻ•ā§ƒāĻˇā§āĻŖāϞ⧀āϞāĻž āĻ¸ā§āĻŽāϰāĻŖ āĻ•āϰ⧇āύāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€āϰ āĻŽā§‚āϞ āϤāĻžā§ŽāĻĒāĻ°ā§āϝ āϕ⧇āĻŦāϞ āĻĒā§‚āϜāĻž āĻŦāĻž āφāύāĻ¨ā§āĻĻ⧇ āϏ⧀āĻŽāĻžāĻŦāĻĻā§āϧ āύāϝāĻŧ, āĻŦāϰāĻ‚ āĻāϰ āĻŽāĻ§ā§āϝ⧇ āϞ⧁āĻ•āĻŋā§Ÿā§‡ āφāϛ⧇ āĻ—āĻ­ā§€āϰ āĻļāĻŋāĻ•ā§āώāĻžāĻ“āĨ¤

āϕ⧇āύ āωāĻĻāϝāĻžāĻĒāĻŋāϤ āĻšāϝāĻŧ āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€?
āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āĻŖ āĻ›āĻŋāϞ⧇āύ āψāĻļā§āĻŦāϰ, āφāĻŦāĻžāϰ āĻāĻ•āχ āϏāĻžāĻĨ⧇ āĻĻāĻžāĻ°ā§āĻļāύāĻŋāĻ•, āϝ⧋āĻĻā§āϧāĻž, āϕ⧂āϟāύ⧀āϤāĻŋāĻŦāĻŋāĻĻ āĻ“ āĻĒā§āϰ⧇āĻŽāĻŽā§Ÿ āĻŽāĻžāύāĻŦāĻŋāĻ• āφāĻĻāĻ°ā§āĻļāĨ¤ āϤāĻžāρāϰ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āĻ­āĻ—āĻŦāĻĻā§â€ŒāĻ—ā§€āϤāĻž āφāϜāĻ“ āφāĻŽāĻžāĻĻ⧇āϰ āĻœā§€āĻŦāύ⧇āϰ āϜāĻ¨ā§āϝ āĻ…āĻŽā§‚āĻ˛ā§āϝ āĻĻāĻŋāĻļāĻžāϰāĻŋāĨ¤
āϤāĻŋāύāĻŋ āĻļāĻŋāĻ–āĻŋāϝāĻŧ⧇āϛ⧇āĻ¨â€”

āĻ•āĻ°ā§āϤāĻŦā§āϝāĻĒāĻžāϞāύ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇

āĻĢāϞāĻžāĻĢāϞ⧇āϰ āϚāĻŋāĻ¨ā§āϤāĻž āύāĻž āĻ•āϰ⧇ āĻ•āĻ°ā§āĻŽā§‡ āĻŽāύ⧋āϝ⧋āĻ—ā§€ āĻšāϤ⧇ āĻšāĻŦ⧇

āϏāĻ¤ā§āϝ āĻ“ āϧāĻ°ā§āĻŽā§‡āϰ āĻĒāĻĨ⧇ āĻ…āϟāϞ āĻĨāĻžāĻ•āϤ⧇ āĻšāĻŦ⧇

āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€ āĻĨ⧇āϕ⧇ āφāĻŽāϰāĻž āϕ⧀ āĻļāĻŋāĻ–āĻŋ?
✔ āĻ…āĻ¨ā§āϝāĻžāϝāĻŧ⧇āϰ āĻŦāĻŋāϰ⧁āĻĻā§āϧ⧇ āĻĻāĻžāρ⧜āĻžāϤ⧇ āĻšāĻŦ⧇
✔ āĻ¸ā§ŽāĻ•āĻ°ā§āĻŽāχ āĻŽāĻžāύ⧁āώ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤ āĻĒāϰāĻŋāϚāϝāĻŧ
✔ āĻœā§€āĻŦāύ⧇ āϝāϤ āĻŦāĻžāϧāĻž āφāϏ⧁āĻ•, āĻŦāĻŋāĻļā§āĻŦāĻžāϏ āĻ“ āĻ­āĻ•ā§āϤāĻŋāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āϤāĻž āĻ…āϤāĻŋāĻ•ā§āϰāĻŽ āĻ•āϰāĻž āϏāĻŽā§āĻ­āĻŦ

āĻ…āϤāĻāĻŦ, āϜāĻ¨ā§āĻŽāĻžāĻˇā§āϟāĻŽā§€ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻ‰ā§ŽāϏāĻŦ āύāϝāĻŧ, āĻāϟāĻŋ āĻ¨ā§āϝāĻžāϝāĻŧ, āĻ­āĻ•ā§āϤāĻŋ āĻ“ āĻŽāĻžāύāĻŦāĻŋāĻ•āϤāĻžāϰ āφāϞ⧋ āĻ›āĻĄāĻŧāĻžāύ⧋āϰ āĻĻāĻŋāύāĨ¤
🌸 āϜ⧟ āĻļā§āϰ⧀āĻ•ā§ƒāĻˇā§āĻŖ 🌸

āĻ›āĻŦāĻŋ āĻ•ā§ƒāϤāĻœā§āĻžāϤāĻžāσ āĻ—ā§āϰ⧋āĻ• āĻāφāχ, āϞ⧇āĻ–āĻž/āĻ•āĻĒāĻŋ āĻ•ā§ƒāϤāĻœā§āĻžāϤāĻžāσ āĻšā§āϝāĻžāϟ āϜāĻŋāĻĒāĻŋāϟāĻŋ

āϜāύāĻ­ā§‹āĻĻāĻž’āχ

āĻāϕ⧋āχ āϰ⧇āĻ›āĻŋāĻĒāĻŋ āϜāύāĻ—āύ āĻŦāĻžāϰāĻ‚āĻŦāĻžāϰ āĻ–āĻžāχāĻŦā§‹ āĻāχāϟāĻž āĻ­āĻžāĻŦāĻž āύ⧇āĻšāĻžāϤ āĻŦā§‹āĻ•āĻžāĻŽā§€ āĻšāχāĻŦā§‹āĨ¤ āĻāĻŽāύ⧋ āĻšāχāϤāĻžāϰ⧇ āϏ⧇āχāĻŽ āϰ⧇āĻ›āĻŋāĻĒāĻŋ ⧍⧟ āĻŦāĻž ā§Šā§Ÿ āĻŦāĻžāϰ āϜāύāĻ—āύāϰ⧇ āĻ­āϰ⧇ āĻĻāĻŋāϤ⧇ āĻ—āĻŋā§Ÿā§‡ āύāĻŋāĻœā§‡āχ āϰ⧇āĻ›āĻŋāĻĒāĻŋ āĻ–ā§‡ā§Ÿā§‡ āĻĢ⧇āϰāĻž āϞāĻžāĻ—āϤāĻŋ āĻĒāĻžāϰ⧇āĨ¤ āĻ…āĻœā§āĻž, āĻŽā§‚āĻ°ā§āĻ–, āĻ…āĻļāĻŋāĻ•ā§āώāĻŋāϤ, āϗ⧁āϜāĻŦāĻ–ā§‹āϰ, āχāĻŽā§‹āĻ›āύāĻžāϞ āϜāύāĻ­ā§‹āĻĻāĻž’āχāĻ—ā§‹ āĻĒā§āϰāĻĨāĻŽāĻŦāĻžāϰ āĻ—ā§‹* āĻŽāĻž*āϞ⧇ āĻ•āχāĻŦā§‹, āĻŽāĻžāϰāϛ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŦ⧇āĻļāĻŋ āĻœā§‹āϰ⧇ āĻŽāĻžāϰāϤ⧇ āĻĒāĻžāϰ⧇ āύāĻžāχāĨ¤ āĻĒāϰ⧇āϰ āĻŦāĻžāϰ āĻ•āχāĻŦā§‹, āφāϗ⧇āϰ āĻŦāĻžāϰ āĻ•āĻŋāϛ⧁ āĻ•āχ āύāĻžāχ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻāχāĻŦāĻžāϰ āĻ•āĻžāϜāϟāĻž āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ āĻŋāĻ• āĻ•āϰāϞ⧇āύ āύāĻžāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻāχ āĻāĻ• āĻĻ⧁āχāĻŦāĻžāϰāχ āϏāχāĨ¤ āĻ…āĻšāύ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϜāύāĻ—āύ āφāϰ āϜāύāĻ­ā§‹āĻĻāĻž’āχ āĻĨāĻžāĻ•āĻŋāϞ āύāĻžāĨ¤ āϤāĻžāĻšāĻžāϰ āϭ⧇āϤāϰ āĻ—ā§‹* āĻŽāĻž* āĻ–āĻžāĻ“āύ⧇āϰ āĻœā§āĻžāĻžāύ⧇āϰ āωāĻĒāĻ°ā§āϝ⧁āĻĒ⧁āϰāĻŋ āωāĻĒāĻ¸ā§āĻĨāĻŋāϤāĻŋ āĻĒāĻ°ā§āϝāĻŦ⧇āĻļāĻŋāϤ āĻšāχāĻŦā§‹āĨ¤ āϤāĻžāϰāĻž ā§Šā§Ÿ āĻŦāĻžāϰ āĻ—ā§‹* āĻŽāĻž* āĻ–āĻžāĻ“āύ⧇āϰ āφāϗ⧇ āĻĒ⧁āĻ°ā§āĻŦāĻžāĻĒāϰ āĻ…āĻ­āĻŋāĻœā§āĻžāϤāĻž āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻžāĻ‡ā§ŸāĻž āωāϞāϟāĻž āĻ—ā§‹* āĻŽā§‡* āĻĻāĻŋāĻŦ⧇āĨ¤ āϏāĻŽā§āĻŽāĻžāύ āĻĻ⧇āĻ–āĻžāĻ‡ā§ŸāĻž āφāĻ¸ā§āϤ⧇āχ āĻĻāĻŋāĻŦ⧇ āĻ•āĻŋāύāĻž āĻāχāϟāĻž āύāĻŋāĻļā§āϚāĻŋāϤ āύāĻž!

āφāĻĒāύāĻŋ āĻ•āĻŋ āĻŦā§āϝāĻžāĻ™ āύāĻžāĻ•āĻŋ āĻŽāĻžāύ⧁āώ?

āĻŽāĻžāĻā§‡ āĻŽāĻžāĻā§‡ āĻĻ⧇āĻ–āĻŋ āωāĻ āĻžāύ āĻĨ⧇āϕ⧇ āĻŦā§āϝāĻžāĻ™ āϞāĻžāĻĢāĻŋā§Ÿā§‡ āϞāĻžāĻ—āĻŋā§Ÿā§‡ āĻāϏ⧇ āĻŦāĻžāϰāĻžāĻ¨ā§āĻĻāĻžā§Ÿ , āĻŦāĻžāĻĨāϰ⧁āĻŽā§‡ āϚāϞ⧇ āφāϏ⧇āĨ¤ āĻŽā§‚āϞāϤ āĻāϰāĻž āύāĻžāχāϟ āĻ¸ā§āĻŸā§‡ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ āφāϏ⧇āĨ¤ āĻĒā§āϰāĻžā§Ÿ āĻĒā§āϰāϤāĻŋāĻĻāĻŋāύāχ āĻĻ⧇āĻ–āĻŋ āϰāĻžāϤ⧇āϰ āĻŦ⧇āϞāĻž āĻāϰāĻž āφāϏ⧇āĨ¤ āĻāĻŽāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ āϰāĻžāϤ⧇ āĻāϰāĻž āĻ•ā§Ÿā§‡āĻ•āϜāύ āφāĻŽāĻžāĻĻ⧇āϰ āĻŦāĻžāϰāĻžāĻ¨ā§āĻĻāĻžā§Ÿ āĻĨāĻžāϕ⧇āĨ¤ āĻ…āĻĻā§āϭ⧁āϤ āĻŦā§āϝāĻžāĻĒāĻžāϰ āϰāĻžāϤ⧇ āĻĨāĻžāĻ•āĻžāϰ āϜāĻ¨ā§āϝ āĻāϰāĻž āϕ⧋āύ āĻĒāĻžāϰāĻŽāĻŋāĻļāύ āĻ¨ā§‡ā§Ÿ āύāĻž, āϕ⧋āύ āĻĒ⧟āϏāĻžāĻ“ āĻĻā§‡ā§Ÿ āύāĻžāĨ¤

āĻŽā§‚āϞāϤ āĻŽāĻžāύ⧁āώāχ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āĻĒā§āϰāĻžāύ⧀ āϝāĻžāϰāĻž āĻšā§Ÿ āĻĒ⧟āϏāĻž āĻ–āϰāϚ āĻ•āϰ⧇ āĻŦāĻžāϏāĻž āĻ­āĻžā§œāĻž āĻĻāĻŋā§Ÿā§‡ āĻĨāĻžāϕ⧇ āύ⧟āϤ⧋ āύāĻŋāĻœā§‡āϰ āĻŦāĻžā§œāĻŋ āĻšāϞ⧇ āĻŦāĻ›āϰ āĻŦāĻ›āϰ āϏāϰāĻ•āĻžāϰāϕ⧇ āϭ⧁āĻŽāĻŋ āĻ•āϰ āĻĻāĻŋā§Ÿā§‡ āĻŦāϏāĻŦāĻžāϏ āĻ•āϰ⧇āĨ¤ āĻ…āĻ¨ā§āϝāĻĻāĻŋāϕ⧇ āĻŽāĻžāύ⧁āώ āĻŦāĻžāĻĻ⧇ āĻ…āĻ¨ā§āϝ āϏāĻ•āĻžāϞ āĻœā§€āĻŦ āϕ⧋āύ āĻ­āĻžā§œāĻž-āĻ•āϰ āĻ›āĻžā§œāĻžāχ āĻŦāϏāĻŦāĻžāϏ āĻ•āϰ⧇, āĻĨāĻžāĻ•āĻžāϰ āϜāĻ¨ā§āϝ āĻ…āύ⧁āĻŽāϤāĻŋ āĻ¨ā§‡ā§Ÿ āύāĻž, āϞāĻžāϗ⧇ āύāĻž!

Vibe coding 2025/āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ ⧍ā§Ļ⧍ā§Ģ

Vibe coding/āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚
——————————

āĻŽāĻŋāϞ⧇āύāĻŋ⧟āĻžāϞ āĻĒā§āϰāϜāĻ¨ā§āĻŽā§‡āϰ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚āσ

āϏāĻ•āĻžāϞ⧇ āĻĻāĻžāϰ⧁āύ āĻ•ā§œāĻž āĻāĻ• āĻ•āĻžāĻĒ āĻ•āĻĢāĻŋ āĻ–ā§‡ā§Ÿā§‡āĻ›āĻŋāĨ¤ āĻŦāĻžāχāϰ⧇ āϏāĻ•āĻžāϞ āĻĨ⧇āϕ⧇ āĻāĻŋāϰ āĻāĻŋāϰ āĻŦ⧃āĻˇā§āϟāĻŋ āĻšāĻšā§āϛ⧇āĨ¤ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇ āχāωāϟāĻŋāωāĻŦ⧇ āĻĻ⧇āĻļā§‹āĻĻā§āϧāĻžāϰ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āĻŋāϤ āĻ—āϤāĻ•āĻžāϞ⧇āϰ āĻ­āĻŋāĻĄāĻŋāĻ“ āϗ⧁āϞ⧋ āĻ…āĻĄāĻŋāĻ“ āφāĻ•āĻžāϰ⧇ āĻļ⧁āĻ¨ā§āϤ⧇āĻ›āĻŋāĨ¤ āϕ⧋āĻĄāĻŋāĻ‚ āĻāĻĄāĻŋāϟāϰ⧇ āĻ•āĻŋāϛ⧁ āϕ⧋āĻĄ āϞāĻŋāĻ–āĻ›āĻŋ, āϟāĻŋāĻŽā§‡āϰ āϕ⧋āĻĄ āϰāĻŋāĻ­āĻŋāω āĻ•āϰāĻ›āĻŋ āĨ¤ āϟāĻŋāĻŽā§‡āϰ āϏāĻžāĻĨ⧇ āĻŽāĻžāĻā§‡ āĻŽāĻžāĻā§‡ āϰāĻŋāĻŽā§‹āϟ āĻ•āϞ⧇ āϛ⧋āϟ āϛ⧋āϟ āĻŽāĻŋāϟāĻŋāĻ‚ āĻ•āϰāĻ›āĻŋ(āĻāϟāĻž āϝāĻĻāĻŋāĻ“ āϏāĻžāϰāĻžāĻĻāĻŋāύ āϚāϞāϤ⧇ āĻĨāĻžāϕ⧇ āĻ•āĻžāϰāĻŖ āφāĻŽāĻŋ āĻĒā§āϰāĻžā§Ÿ ā§Ģā§Ļ% āĻāϰ āĻŦ⧇āĻļāĻŋ āĻāĻ–āύ āϰāĻŋāĻŽā§‹āϟ āĻŽā§āϝāĻžāύ⧇āϜ āĻ•āϰāĻŋ)āĨ¤ āφāĻŽāϰāĻž āϝ⧇ āϏāĻŽā§Ÿā§‡ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻļ⧇āĻ–āĻž āĻļ⧁āϰ⧁ āĻ•āϰ⧇āĻ›āĻŋ āφāĻŽāϰāĻž āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻŦāϞāϤ⧇ āĻāχ āϧāϰāύ⧇āϰ āϕ⧋āĻĄāĻŋāĻ‚ āĻŦ⧁āĻāϤāĻžāĻŽāĨ¤ āĻŽā§‚āϞāϤ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻŽā§Ÿ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻŦāϞāϤ⧇ āĻ•āĻŋāϛ⧁ āĻ›āĻŋāϞ āύāĻžāĨ¤ āĻāχāϟāĻž ⧍ā§Ļ⧍ā§Ē/⧍ā§Ļ⧍ā§Ģ āĻāϰ āĻĻāĻŋāϕ⧇ āφāϏāϛ⧇āĨ¤

āĻœā§‡āĻžā§āϜāĻŋ/āϏāĻžāĻŽā§āĻĒā§āϰāϤāĻŋāĻ• āĻĒā§āϰāϜāĻ¨ā§āĻŽā§‡āϰ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚āσ

āφāĻŽāϰāĻž āĻŽāĻŋāϞ⧇āύāĻŋ⧟āĻžāϞ āĻĒā§āϰāϜāĻ¨ā§āĻŽ āĻāύāĻžāϞāĻ— āĻĨ⧇āϕ⧇ āĻĄāĻŋāϜāĻŋāϟāĻžāϞ āϝ⧁āϗ⧇ āĻāϏ⧇āĻ›āĻŋāĨ¤ āĻŦāϞāĻžā§Ÿ āĻĒā§āϰāĻžā§Ÿ ā§§ā§Ž/⧍ā§Ļ āĻŦāĻ›āϰ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āφāĻŽāϰāĻž āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻŋ āύāĻžāχāĨ¤ āĻ…āĻ¨ā§āϝ āĻĻāĻŋāϕ⧇ āĻœā§‡āĻžā§āϜāĻŋ āĻļ⧁āϰ⧁ āĻĨ⧇āϕ⧇ āĻŽā§‹āĻŦāĻžāχāϞ āĻāĻŦāĻ‚ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ āĻĻ⧇āĻ–āϛ⧇āĨ¤ āĻŦāĻ°ā§āϤāĻŽāĻžāύ⧇ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻļ⧁āĻŦā§āĻĻāϟāĻž āĻŸā§āϰ⧇āĻ¨ā§āĻĄāĻŋāĨ¤ āωāχāĻ•āĻŋāĻĒāĻŋāĻĄāĻŋ⧟āĻžāϤ⧇ āϗ⧇āϞ⧇ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻāϰ āϏāĻ‚āĻ—āĻž āĻāĻ­āĻžāĻŦ⧇ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ “Vibe coding is an artificial intelligence-assisted software development style popularized by Andrej Karpathy in early 2025.[”

āĻŽāĻžāύ⧇ āĻšāĻšā§āϛ⧇ āĻāĻŽāύ āϏāĻĢāϟāĻ“ā§Ÿā§āϝāĻžāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āϕ⧋āĻĄ āĻ•āϰāĻž āϝāĻž artificial intelligence āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϛ⧇āĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻĒā§āϰāĻŽāϟ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇āχ āϕ⧋āĻĄ āϞ⧇āĻ–āĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ artificial intelligence āĻāϰ āϞ⧇āĻ–āĻž āϕ⧋āĻĄ āύāĻŋāĻœā§‡ āĻ•āĻŋāϛ⧁ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āϕ⧋āĻĄ āĻāϰ āωāĻĒāϰ āφāĻŦāĻžāϰ āĻĒā§āϰāĻŽāϟ āϞāĻŋāϖ⧇ artificial intelligence āĻĻāĻŋā§Ÿā§‡ āφāϰ⧋ āωāĻ¨ā§āύāϤ āĻāĻŦāĻ‚ āύāϤ⧁āύ āĻĢāĻŋāϚāĻžāϰ āϞ⧇āĻ–āĻžāϰ āϝ⧇ āĻŦā§āϝāĻžāĻĒāĻžāϰāϟāĻž āĻāχ āĻĒā§āϰāϏ⧇āϏāχ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚āĨ¤ āϝāĻĻāĻŋāĻ“ artificial intelligence āχāĻ¨ā§āĻŸā§āϰāĻŋāĻ—ā§āϰ⧇āĻŸā§‡āĻĄ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻāĻĄāĻŋāϟāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāĻ–āύ āĻāĻ•āĻĻāĻŽ āύāϤ⧁āύāĨ¤ āύāϤ⧁āύ āĻ•āĻŋāϛ⧁ āĻ…āύāϞāĻžāχāύ āĻāĻŦāĻ‚ āĻ…āĻĢāϞāĻžāχāύ āĻŦ⧇āϏāĻĄ āĻāĻĄāĻŋāϟāϰ āĻāϏ⧇āϛ⧇ āĻāĻŦāĻ‚ āφāϏāĻŦ⧇āĨ¤ āĻĒ⧁āϰāĻžāϤāύ āĻĒāĻĒ⧁āϞāĻžāϰ āĻāĻĄāĻŋāϟāϰ āĻĒā§āϞāĻžāĻ—āĻŋāύ āĻŦāĻž āĻāĻ•ā§āϏāĻŸā§‡āύāĻļāύ āφāĻ•āĻžāϰ⧇ āĻĢāĻŋāϚāĻžāϰ āϗ⧁āϞ⧋ āύāĻŋā§Ÿā§‡ āφāϏāϤ⧇āϛ⧇āĨ¤

āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻāϰ āĻ•āĻžāϰāϪ⧇ āĻ•āĻŋ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻļ⧇āĻ–āĻžāϰ āĻĻāϰāĻ•āĻžāϰ āĻšāĻŦ⧇ āύāĻž?

āφāϏāϞ⧇ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻļ⧇āĻ–āĻžāϰ āĻŦā§āϝāĻžāĻĒāĻžāϰāϟāĻž āϚāĻŋāϰāĻ•āĻžāϞ āĻāĻ•āχ āĻĨ⧇āϕ⧇ āϝāĻžāĻŦ⧇ āϝāĻĻāĻŋ āĻ•āĻžāϰ⧋ āĻļ⧇āĻ–āĻžāϰ āĻĻāϰāĻ•āĻžāϰ āĻšā§ŸāĨ¤ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻŦāĻŋāĻļ⧇āώ āĻ•āϰ⧇ āĻĒā§āϰāĻĢ⧇āĻļāύāĻžāϞ āĻ•āĻžāϜ āϗ⧁āϞ⧋ āĻāĻ—āĻŋā§Ÿā§‡ āύ⧇āĻ“ā§ŸāĻž āĻĻā§āϰ⧁āϤ āĻšāĻŦ⧇, āϝāĻžāϰāĻž āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻĒāĻžāϰ⧇ āύāĻž āϤāĻžāϰāĻž āĻ…āύ⧇āϕ⧇ āύāĻŋāĻœā§‡āĻĻ⧇āϰ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ āĻŽāϤ āĻ•āĻŋāϛ⧁ āĻŸā§‡āĻŽāĻĒā§āϞ⧇āĻŸā§‡āĻĄ āϟ⧁āϞ āĻŦāĻžāύāĻžāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύāĨ¤ āϤāĻŦ⧇ āϝāĻ–āύāχ āĻ•āĻžāĻ¸ā§āϟāĻŽ āĻŦāĻž āϏ⧃āϜāύāĻļā§€āϞ āĻ•āĻŋāϛ⧁ āĻĻāϰāĻ•āĻžāϰ āĻšāĻŦ⧇ āϤāĻ–āύ āύāĻŋāĻœā§‡āϰ āĻŽā§‡āϧāĻž āĻāĻŦāĻ‚ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻ¸ā§āĻ•āĻŋāϞ āĻāϰ āĻĻāϰāĻ•āĻžāϰ āĻšāĻŦ⧇āχāĨ¤

āĻļ⧁āϰ⧁āϰ āĻĻāĻŋāϕ⧇ āφāĻŽāĻŋ āĻšā§āϝāĻžāϟāϜāĻŋāĻĒāĻŋāϟāĻŋ āĻŦāĻž āĻāχ āϧāϰāύ⧇āϰ āϟ⧁āϞ āϗ⧁āϞ⧋ āφāϞāĻžāĻĻāĻž āωāχāĻ¨ā§āĻĄā§‹āϤ⧇ āϰ⧇āϖ⧇ āĻšā§āϝāĻžāϟ āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āϜāĻŋāĻœā§āĻžāĻžāϏāĻž āĻ•āϰ⧇ āϕ⧋āĻĄ āĻ•āĻŋāϛ⧁ āϞāĻŋāϖ⧇ āύ⧇āĻ“ā§ŸāĻž āĻŦāĻž āϏāĻšāϜ āĻ•āϰ⧇ āύ⧇āĻ“ā§ŸāĻžāϰ āĻ•āĻžāϜ āĻ•āϰāϞ⧇āĻ“ āĻāĻ–āύ āĻāĻĄāĻŋāϟāϰ⧇ āχāĻ¨ā§āϟāĻŋāĻ—ā§āϰ⧇āĻŸā§‡āĻĄ āĻāĻ•ā§āϏāĻŸā§‡āύāĻļāύ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻļ⧁āϰ⧁ āĻ•āϰ⧇āĻ›āĻŋāĨ¤ āĻ…āύ⧇āϕ⧇āχ āφāϗ⧇ āĻĨ⧇āϕ⧇ āĻ­āĻŋāϜ⧁⧟āĻžāϞ āĻ¸ā§āϟ⧁āĻĄāĻŋāĻ“ āϕ⧋āĻĄ , āĻĒāĻŋāĻāχāϚāĻĒāĻŋ āĻ¸ā§āĻŸā§āϰāĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϛ⧇ āϝāĻž āĻāφāχ āĻāĻ•ā§āϏāĻŸā§‡āύāĻļāύāĨ¤ āϕ⧇āω āϕ⧇āω āĻ•āĻžāϰāϏāϰ āĻāϰ āĻŽāϤ āύāϤ⧁āύ āĻāĻĄāĻŋāϟāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻļ⧁āϰ⧁ āĻ•āϰ⧇āϛ⧇āĨ¤

āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻ•āĻŋ āφāĻŽāĻžāĻĻ⧇āϰ āĻŦ⧁āĻĻā§āϧāĻŋ āϚāĻ°ā§āϚāĻž āϏ⧀āĻŽāĻŋāϤ āĻ•āϰ⧇ āĻĻ⧇āĻŦ⧇?

āφāĻŽāĻžāϰ āĻ•āĻžāϛ⧇ āĻŽāύ⧇ āĻšā§Ÿ āύāĻž āϝ⧇ āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āφāĻŽāĻžāĻĻ⧇āϰ āĻŦ⧁āĻĻā§āϧāĻŋ āϚāĻ°ā§āϚāĻžāϕ⧇ āĻĨāĻžāĻŽāĻŋā§Ÿā§‡ āĻĻ⧇āĻŦ⧇āĨ¤ āĻ…āĻ¨ā§āϤāϤ āφāĻŽāĻŋ āĻāϟāĻžāϕ⧇ āϏāĻšāĻžā§ŸāĻ• āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻ›āĻŋāĨ¤ āĻ…āύ⧇āĻ• āϏāĻŽā§Ÿ āĻāφāχāϕ⧇ āĻ āĻŋāĻ• āĻŽāϤ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻ•āϰāϤ⧇ āĻ…āύ⧇āĻ• āϏāĻŽā§Ÿ āϧāϰ⧇ āϞāĻŋāĻ–āϤ⧇ āĻšā§Ÿ āϝāĻž āφāĻŽāϰāĻž āĻĒā§āϰāĻŽāϟ āĻŦāϞ⧇ āĻĨāĻžāĻ•āĻŋāĨ¤ āĻāχ āϞ⧇āĻ–āĻžāϞ⧇āĻ–āĻŋ āĻ•āϰāϤ⧇āĻ“ āĻ…āύ⧇āĻ• āϏāĻŽā§Ÿ āϞāĻžāϗ⧇āĨ¤ āϛ⧋āϟ āĻ–āĻžāϟ āĻ…āύ⧇āĻ• āĻ•āĻŋāϛ⧁ āύāĻŋāĻœā§‡āϰ āĻ¸ā§āĻ•āĻŋāϞ āĻĨāĻžāĻ•āϞ⧇ āĻĒā§āϰāĻŽāϟ āϞ⧇āĻ–āĻžāϰ āϏāĻŽā§Ÿ āĻŦā§āϝāĻžā§Ÿ āύāĻž āĻ•āϰ⧇ āύāĻŋāĻœā§‡āχ āϞ⧇āĻ–āĻž āϝāĻžā§ŸāĨ¤

āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āĻļ⧁āϰ⧁ āĻšā§Ÿā§‡āϛ⧇, āϝ⧇āϤ⧇ āĻšāĻŦ⧇ āĻ…āύ⧇āĻ• āĻĻā§‚āϰāσ

āĻ­āĻžāχāĻŦ āϕ⧋āĻĄāĻŋāĻ‚ āϏāĻžāĻŽā§āĻĒā§āϰāϤāĻŋāĻ•(⧍ā§Ļ⧍ā§Ģ) āĻŦāĻ›āϰ⧇āχ āĻāϏ⧇āϛ⧇āĨ¤ āφāϰ⧋ āĻ…āύ⧇āĻ• āĻĻā§‚āϰ āϝāĻžāĻŦ⧇āĨ¤ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ āĻŦāĻž āϏāĻĢāϟāĻ“ā§Ÿā§āϝāĻžāϰ āĻĄā§‡āϭ⧇āϞāĻĒāĻŽā§‡āĻ¨ā§āϟ āĻāϰ āϏāĻžāĻĨ⧇ āϝ⧁āĻ•ā§āϤ āĻĒ⧇āĻļāĻžāĻœā§€āĻŦāĻŋāĻĻ⧇āϰ āϏāĻŽā§Ÿā§‡āϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇ āĻ…āύ⧇āĻ• āĻāĻĄāϜāĻžāĻ¸ā§āϟ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤

#CodeVibes #ProgrammingLife #CoderMood #TechVibes #CodeAndChill #DevLife #CodingZen #ProgrammerHustle #TechTribe #CodeFlow
(āĻšā§āϝāĻžāĻļāĻŸā§āϝāĻžāĻ— āϗ⧁āϞ⧋ āĻāφāχ āĻĻāĻŋā§Ÿā§‡ āϞ⧇āĻ–āĻž)

Top 10 Interesting AI Tools for Developers in 2025

Boost your productivity and innovation with these game-changing AI tools built for modern developers. Previously I wrote about “How to use AI tools for Social Media posting”. I think article will write about some AI tools.

Artificial Intelligence is reshaping how developers code, test, debug, and even design software. With new tools emerging constantly, it’s hard to keep track. That’s why we’ve handpicked 10 exciting AI tools in 2025 that you should definitely explore. Whether you’re building web apps, automating workflows, or enhancing code quality—these tools can make your life easier.

1. GitHub Copilot

GitHub Copilot is a code completion tool powered by OpenAI. It suggests whole lines or blocks of code based on natural language prompts or your current coding context. It’s deeply integrated into VS Code and supports many languages. A must-have for faster prototyping and development.

2. Codeium

Codeium is a free AI-powered autocomplete tool similar to Copilot, but with support for JetBrains IDEs, Jupyter notebooks, and more. It’s fast, private, and supports a wide range of languages. Great for developers who want an efficient Copilot alternative.

3. Cursor

Cursor is an AI-first code editor built on VS Code. It lets you talk to your code, refactor intelligently, and debug with AI assistance. If you’re tired of context-switching, Cursor makes development more intuitive and conversational.

4. Continue

Continue is an open-source Copilot alternative that runs locally or remotely. It integrates directly into your IDE and provides chat-based assistance. Developers who want control and transparency will love it.

5. Tabnine

Tabnine is another AI code completion tool trained on permissive open-source code. It’s optimized for team-based usage, with private models and strong security policies, making it enterprise-friendly.

6. CodeWhisperer by AWS

CodeWhisperer is Amazon’s take on AI code assistance. It works well with AWS services and supports multiple IDEs. If you’re building cloud applications, this is worth checking out.

7. Phind

Phind is an AI search engine built specifically for developers. You can ask it questions about frameworks, error messages, or best practices, and it provides concise, accurate answers with references. Like Stack Overflow meets ChatGPT, but faster.

8. CodiumAI

CodiumAI helps you write tests automatically using AI. It integrates with your IDE and generates unit tests based on code behavior. If testing is a chore for you, this tool can save hours every week.

9. Refact

Refact is an open-source alternative to Copilot that runs offline. Ideal for privacy-conscious developers or teams with secure requirements. You get the power of LLMs without exposing code to external APIs.

10. LangChain

LangChain is a framework for building LLM-powered applications. It allows developers to chain prompts, tools, and memory into powerful AI apps. If you’re interested in building chatbots or AI workflows, this is a must-try. Related read: Mastering Queue Failures.

Final Thoughts

The AI tooling landscape for developers is evolving rapidly. Whether you want help writing code, generating tests, searching technical answers, or building custom LLM apps—there’s something on this list for you. Start with one or two tools, and you’ll see your workflow getting smarter.

Also, check out our article on WordPress Plugin Comparisons to see how AI thinking applies to plugin evaluations too.

Mastering Prompt Engineering: Your Beginner’s Guide to AI Art & Content Creation

Welcome to the exciting world of AI-powered art and content creation! Tools like DALL-E 2, Midjourney, Stable Diffusion, and advanced language models are revolutionizing how we generate visuals and text. But the key to unlocking their full potential lies in a skill called prompt engineering. Think of a prompt as your instruction manual for these AI powerhouses. The better your instructions, the more impressive and tailored the results will be.

What is Prompt Engineering?

At its core, prompt engineering is the art and science of crafting effective text prompts that guide AI models to produce the desired output. It involves understanding how these models interpret language and experimenting with different phrasing, keywords, and parameters to achieve specific artistic styles, content formats, and levels of detail. It’s part technical, part creative, and entirely essential for getting the most out of AI generation.

Why is Prompt Engineering Important?

  • Better Results: Well-crafted prompts lead to outputs that more closely match your vision.
  • Increased Efficiency: Clear instructions reduce the need for endless regeneration attempts.
  • Unlocking Creativity: Precise prompts can push AI models in unexpected and innovative directions.
  • Cost Savings: Many AI platforms charge per generation, so effective prompts can save you money.

Key Elements of an Effective Prompt

While there’s no single “perfect” prompt, most effective ones include several key elements:

  1. Subject: Clearly define what you want the AI to create (e.g., “a majestic lion,” “a blog post about renewable energy”).
  2. Action/Verb: Specify what the subject is doing (e.g., “roaring in a savanna,” “explaining the benefits of solar power”).
  3. Style/Medium: For art, indicate the desired style (e.g., “photorealistic,” “impressionistic,” “anime”). For content, specify the format (e.g., “blog post,” “poem,” “social media update”).
  4. Details/Modifiers: Add specific details to refine the output (e.g., “golden mane,” “sunset lighting,” “written in a conversational tone”).
  5. Context/Setting: Provide the environment or background (e.g., “under a starry night sky,” “in a futuristic city”).
  6. Quality/Mood: Suggest the desired quality or emotional tone (e.g., “high resolution,” “cinematic,” “serene,” “dramatic”).

Beginner Tips for Prompt Engineering

  • Be Descriptive: Don’t be afraid to use detailed language. The more information you provide, the better the AI can understand your request.
  • Use Specific Keywords: Think about the exact terms you’d use to describe what you’re looking for.
  • Experiment with Different Phrasing: Try rephrasing your prompts to see how the AI responds. Subtle changes can sometimes yield surprising results.
  • Iterate and Refine: Don’t expect perfection on the first try. Generate an initial output, analyze it, and then refine your prompt based on the results.
  • Specify Negative Prompts (if available): Some AI tools allow you to specify things you *don’t* want to see in the output. This can be just as helpful as positive prompts.
  • Look at Examples: Explore online communities and galleries to see examples of effective prompts and learn from others.
  • Understand the AI’s Capabilities (and Limitations): Each AI model has its strengths and weaknesses. Experiment to understand what it does best.

Examples in Action

Let’s look at a few examples:

  • AI Art:
    • Beginner Prompt: “A cat”
    • Improved Prompt: “A fluffy ginger cat sleeping peacefully on a window sill, bathed in soft morning sunlight, photorealistic style”
  • AI Content:
    • Beginner Prompt: “Write about the benefits of exercise”
    • Improved Prompt: “Write a blog post of about 500 words explaining the top three mental and physical health benefits of regular exercise, written in a friendly and encouraging tone for young adults.”

The Journey of Mastery

Mastering prompt engineering is an ongoing journey. As AI models evolve, so too will the techniques for crafting effective prompts. Embrace experimentation, stay curious, and don’t be afraid to push the boundaries of what’s possible. With practice, you’ll unlock the incredible potential of AI for your art and content creation endeavors.

Unlocking Your Inner Navigator: The Power of Spatial Intelligence

Have you ever marvelled at how an architect effortlessly sketches a complex building in their mind, or how a surgeon navigates intricate anatomical pathways with precision? The secret often lies in a remarkable cognitive ability called spatial intelligence.

Spatial intelligence refers to the ability to visualize and manipulate objects and spaces in one’s mind, reason about spatial relationships, and understand how objects relate to each other in space. It encompasses skills like pattern recognition, navigation, and the ability to create mental representations of the physical world. Essentially, it’s the capacity to understand and reason with visual and spatial information.

Key Aspects of Spatial Intelligence:

  • Visualization: This is the cornerstone of spatial intelligence – the ability to form vivid mental images and manipulate them. Think about rotating a complex 3D object in your mind, or envisioning how a piece of furniture would fit into a room. It’s about seeing with your mind’s eye.
  • Spatial Reasoning: Beyond just seeing, spatial reasoning involves understanding the intricate relationships between objects in space. This includes grasping concepts like distance, direction (north, south, east, west), and how different elements are positioned relative to one another. It’s what allows you to piece together a jigsaw puzzle or understand a complex map.
  • Pattern Recognition: Our world is full of visual patterns, from the repeating motifs in a design to the flow of traffic on a busy street. Spatial intelligence empowers us to identify, analyze, and understand these patterns, which is invaluable for problem-solving, design, and even anticipating outcomes.
  • Navigation: Whether you’re finding your way around a bustling new city or simply re-arranging your living room, effective navigation relies heavily on spatial intelligence. It’s the ability to create and update mental maps of environments, both familiar and unfamiliar, and to confidently move through them.

Examples of Spatial Intelligence in Action:

Spatial intelligence isn’t just for rocket scientists or elite athletes. It’s a fundamental skill that plays out in countless aspects of our daily lives. Consider these diverse examples:

  • A surgeon meticulously visualizing the human body and its organs during a delicate operation.
  • An architect bringing a grand structural design to life, first in their mind, then on paper.
  • A chess player strategizing multiple moves ahead, visualizing the board and potential outcomes.
  • A person effortlessly finding their way around a new city, even without GPS.
  • A scientist visualizing the intricate three-dimensional structure of a complex molecule.
  • An artist composing a painting or sculpture, understanding balance, perspective, and form.
  • A mechanic diagnosing an engine problem by visualizing how internal components interact.
  • A video game designer creating immersive virtual worlds that feel real and navigable.

Why is Spatial Intelligence So Important?

The significance of spatial intelligence extends far beyond niche professions. It’s a vital cognitive skill with widespread impact:

  • Gateway to STEM Fields: Spatial intelligence is absolutely crucial for success in Science, Technology, Engineering, and Mathematics (STEM) fields. Careers involving design, architecture, robotics, computer graphics, and even certain aspects of medicine heavily rely on a strong spatial aptitude. From understanding molecular structures to designing complex machinery, the ability to visualize and manipulate in three dimensions is paramount.
  • Enhancing Everyday Life: Beyond academic and professional pursuits, spatial intelligence significantly enhances our daily interactions with the physical world. It improves our navigation skills, makes us better problem-solvers when faced with spatial challenges (like fitting luggage into a car boot), and helps us better understand and interact with our surroundings.
  • Boosting Cognitive Development: Developing and exercising spatial intelligence can have broader cognitive benefits. It’s linked to improved memory, enhanced spatial reasoning, and a boost in overall problem-solving abilities. Engaging in activities that challenge your spatial skills can literally make you smarter!
  • Crucial for Technological Advancements: We are living in an increasingly digital and immersive world. As technology continues to incorporate virtual reality (VR) and augmented reality (AR), spatial intelligence becomes even more critical. Designing, interacting with, and even simply understanding these advanced technologies will demand a high level of spatial awareness and manipulation. Think about navigating a virtual world or overlaying digital information onto your real environment – these experiences hinge on spatial intelligence.

Cultivating Your Spatial Skills:

The good news is that spatial intelligence isn’t a fixed trait; it can be developed and refined. Engaging in activities like:

  • Playing puzzle games (jigsaw, Rubik’s Cube, tangrams)
  • Learning to read maps and navigate without GPS
  • Engaging in hands-on activities like building models, LEGOs, or even cooking (visualizing ingredients)
  • Studying architecture or design
  • Taking art classes that focus on perspective and form
  • Practicing visualization exercises (mentally rotating objects, picturing routes)

In essence, spatial intelligence is a fundamental cognitive skill that enables us to understand, reason with, and interact with the world around us, both in the physical and rapidly expanding digital realms. By recognizing its importance and actively working to enhance it, we can unlock a powerful capacity for problem-solving, creativity, and navigating the complexities of modern life.

āĻ•āĻ–āύāχ āϕ⧋āύ āϜ⧁āύāĻŋ⧟āϰ āĻŦāĻž āĻĢā§āϰ⧇āĻļāĻžāϰāϕ⧇ āϕ⧋āύ āϜāĻŦ⧇ āĻĄāĻŋāϰ⧇āĻ•ā§āϟāϞāĻŋ āϰāĻŋāĻ•āĻŽā§‡āĻ¨ā§āĻĄ āĻ•āϰāĻž āωāϚāĻŋāϤ āύāĻž

āĻ•āĻ–āύāχ āϕ⧋āύ āϜ⧁āύāĻŋ⧟āϰ āĻŦāĻž āĻĢā§āϰ⧇āĻļāĻžāϰāϕ⧇ āϕ⧋āύ āϜāĻŦ⧇ āĻĄāĻŋāϰ⧇āĻ•ā§āϟāϞāĻŋ āϰāĻŋāĻ•āĻŽā§‡āĻ¨ā§āĻĄ āĻ•āϰāĻž āωāϚāĻŋāϤ āύāĻžāĨ¤ āφāĻŽāĻžāϰ āĻ•āĻžāϛ⧇ āĻāχ āϧāϰāύ⧇āϰ āϕ⧇āϏ āφāϏāϞ⧇ āφāĻŽāĻŋ āϝāĻž āĻ•āϰāĻŋāĨ¤
ā§§āĨ¤ āϝāĻĻāĻŋ āĻ…āĻ¨ā§āϝ āϕ⧋āύ āϰāĻŋāϞ⧇āϟāĻŋāĻ­ āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻāĻĒā§āϰ⧋āϚ āĻ•āϰ⧇ āϤāĻžāĻšāϞ⧇ āφāĻŽāĻŋ āĻŦāϞ⧇ āϤāĻžāϕ⧇ āϏāϰāĻžāϏāϰāĻŋ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰāϤ⧇āĨ¤ āϚāĻžāĻ•āϰāĻŋ āφāϰ āĻĒā§āϰ⧇āĻŽ āĻāχ āĻĻ⧁āχāϟāĻžāϕ⧇ āϝāĻžāϰāĻž āύāĻŋāĻœā§‡āϰāĻž āϏāϰāĻžāϏāϰāĻŋ āĻāĻĒā§āϰ⧋āϚ āĻ•āϰ⧇ āύāĻž āφāϗ⧇ āϤāĻžāĻĻ⧇āϰ āϚāĻŋāĻ¨ā§āϤāĻž āĻ­āĻžāĻŦāύāĻžāϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ āĻĻāϰāĻ•āĻžāϰāĨ¤ āĻŽāĻžāύ⧇ āĻ­āĻžā§ŸāĻž āĻšā§Ÿā§‡ āϕ⧇āω āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰāϞ⧇ āφāĻŽāĻŋ āϕ⧋āύ āĻšā§‡āĻ˛ā§āĻĒ āĻ•āϰāĻŋāχ āύāĻžāĨ¤ āĻ•āĻžāϰ⧋āχ āĻ•āϰāĻž āωāϚāĻŋāϤ āύāĻžāĨ¤ āĻ­āĻžā§ŸāĻž āĻšā§Ÿā§‡ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰāϞ⧇ āĻšā§‡āĻ˛ā§āĻĒ āύāĻž āĻ•āϰāĻžāϟāĻžā§Ÿ āĻšā§‡āĻ˛ā§āĻĒāĨ¤ āĻ­āĻžā§ŸāĻž āĻšā§Ÿā§‡ āĻŽāĻžāύ⧇āσ āĻ­āĻžāχ āφāĻŽāĻžāϰ āĻ­āĻžāĻ—ā§āύ⧇āϰ āϜāĻ¨ā§āϝ, āφāĻŽāĻžāϰ āĻļāĻžāϞāĻžāϰ āϜāĻ¨ā§āϝ, āφāĻŽāĻžāϰ āĻļāĻžāϞāĻŋāϰ āϜāĻžāĻŽāĻžāχ āĻāϰ āϜāĻ¨ā§āϝ āĻāχ āϰāĻ•āĻŽ āĻ…āύ⧁āϰ⧋āϧ āϝāĻžāϰāĻž āĻ•āϰ⧇āĨ¤ āĻāχ āϧāϰāύ⧇āϰ āĻ…āύ⧁āϰ⧋āϧ āϝāĻžāϰāĻž āĻ•āϰ⧇ āϤāĻžāĻĻ⧇āϰ āωāϚāĻŋāϤ āϝāĻžāϕ⧇ āĻ…āύ⧁āϰ⧋āϧ āĻ•āϰāĻž āĻšāĻšā§āϛ⧇ āϤāĻžāϰ āϏāĻžāĻĨ⧇ āϏāϰāĻžāϏāϰāĻŋ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰāĻŋā§Ÿā§‡ āĻĻ⧇āĻ“ā§ŸāĻžāĨ¤
⧍āĨ¤ āϕ⧇āω āϏāϰāĻžāϏāϰāĻŋ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰāϞ⧇ āφāĻŽāĻŋ āĻŦāϞāĻŋ āϰāĻŋāϜāĻŋāωāĻŽ āĻĒāĻžāĻ āĻžāϤ⧇āĨ¤ āφāĻŽāĻŋ āϐ āĻĻ⧇āϖ⧇ āĻ•āĻŋāϛ⧁ āϏāĻžāĻœā§‡āĻļāύ āĻĻ⧇āχāĨ¤ āϝāĻžāϰāĻž āĻāχ āϏāĻžāĻœā§‡āĻļāύ āύāĻŋā§Ÿā§‡ āϰāĻŋāϜāĻŋāωāĻŽ āωāĻ¨ā§āύāϤāĻŋ āĻ•āϰ⧇ āϤāĻžāĻĻ⧇āϰ āĻšā§‡āĻ˛ā§āĻĒ āĻ•āϰāĻŋ, āĻ…āĻ¨ā§āϝāĻĻ⧇āϰ āĻ•āϰāĻŋ āύāĻžāĨ¤
ā§ŠāĨ¤ ⧍ āĻ¸ā§āĻŸā§‡āĻĒ āĻĨ⧇āϕ⧇ āϝāĻžāϰāĻž āϟāĻŋāϕ⧇ āϝāĻžā§Ÿ, āϤāĻžāĻĻ⧇āϰ āφāĻŽāĻŋ āύāĻŋāĻœā§‡āϰ āĻ¸ā§āĻ•āĻŋāϞ āĻĒā§āϰāĻĻāĻ°ā§āĻļāύ āĻāϰ āϜāĻ¨ā§āϝ āύāĻŋāĻœā§‡āϰ āĻāĻ•āϟāĻž āĻ—āĻŋāϟāĻšāĻžāĻŦ āĻŦāĻž āĻŦā§āϝāĻ•ā§āϤāĻŋāĻ—āϤ āĻĒā§āϰ⧋āĻĢāĻžāχāϞ āϤ⧈āϰāĻŋ āĻ•āϰāϤ⧇ āĻŦāϞāĻŋāĨ¤ āύāĻŋāĻœā§‡āϰ āĻ•āϰāĻž āĻāĻ•āϟāĻž āĻŦāĻž āĻĻ⧁āχāϟāĻž āĻĒā§āϰāĻœā§‡āĻ•ā§āϟ āĻ­āĻžāϞ⧋ āĻ•āϰ⧇ āϰ⧇āĻĄāĻŋ āĻ•āϰāϤ⧇ āĻŦāϞāĻŋ āĻāĻŦāĻ‚ āϜāĻŦ āύāĻž āĻĒāĻžāĻ“ā§ŸāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ•āĻŋāĻ‚āĻŦāĻž āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻĒāϰāĻ“ āϏ⧇āχ āϗ⧁āϞ⧋ āωāĻ¨ā§āύāϤāĻŋ āĻ•āϰāϤ⧇ āĻĨāĻžāĻ•āϤ⧇ āĻŦāϞāĻŋāĨ¤ āϝāĻžāϰāĻž āĻāϟāĻž āĻ•āϰ⧇ āϤāĻžāĻĻ⧇āϰ āϜāĻ¨ā§āϝ āĻ¸ā§āĻŸā§‡āĻĒ ā§ĒāĨ¤
ā§ĒāĨ¤ āφāĻŽāĻŋ āĻ•āĻŋāϛ⧁ āĻĢ⧇āϏāĻŦ⧁āĻ• āĻ—ā§āϰ⧁āĻĒ āĻāϰ āϞāĻŋāĻ™ā§āĻ• āĻĻ⧇āχ āϝ⧇āĻ–āĻžāύ⧇ āϰ⧇āϗ⧁āϞāĻžāϰ āϜāĻŦ āĻĒā§‹āĻ¸ā§āϟ āĻšā§ŸāĨ¤ āϜāĻŦ āϏāĻžāχāϟ āĻāϰ āϞāĻŋāĻ™ā§āĻ• āĻĻ⧇āχāĨ¤ āϏ⧇āϗ⧁āϞ⧋ āĻĻ⧇āϖ⧇ āϤāĻžāϕ⧇āχ āĻāĻĒā§āϞāĻžāχ āĻ•āϰāϤ⧇ āĻŦāϞāĻŋāĨ¤ āĻāĻĒā§āϞāĻžāχ āĻ•āϰāĻžāϰ āφāϗ⧇ āχāĻŽā§‡āχāϞ āĻ•āĻŋāĻ­āĻžāĻŦ⧇ āϞāĻŋāĻ–āĻŦ⧇, āϰāĻŋāϜāĻŋāωāĻŽ āϰ⧇āĻĄāĻŋ āĻ•āϰāĻž āχāĻ¤ā§āϝāĻžāĻĻāĻŋ āϟāĻŋāĻĒāϏ āĻĻāĻŋā§Ÿā§‡ āĻĻ⧇āχāĨ¤ āĻ…āύ⧇āĻ• āĻāĻĒā§āϞāĻžāχ āύāĻž āĻ•āϰ⧇ āϝāĻžāĻĻ⧇āϰ āĻĒā§āϰāϤāĻŋāĻˇā§āĻ āĻžāύ⧇ āĻāĻĒā§āϞāĻžāχ āĻ•āϰāϛ⧇ āϤāĻžāĻĻ⧇āϰ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āϤāĻžāĻĻ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āϏāĻžāχāϟ āĻĨ⧇āϕ⧇ āϜāĻžāύāϤ⧇ āĻŦāϞāĻŋāĨ¤ āϜāĻŦ āĻĄā§‡āϏāĻ•ā§āϰāĻŋāĻĒāĻļāύ āĻĒā§œā§‡ āĻĻ⧇āĻ–āϤ⧇ āĻŦāϞāĻŋāĨ¤ āϤāĻžāϰāĻĒāϰ āϏ⧇āχ āĻ…āύ⧁āϏāĻžāϰ⧇ āĻāĻĒā§āϞāĻžāχ āĻ•āϰāϤ⧇ āĻŦāϞāĻŋāĨ¤ āĻŦ⧇āĻļāĻŋāϰ āĻ­āĻžāĻ— āĻāχ āϗ⧁āϞ⧋ āĻ•āϰ⧇ āύāĻžāĨ¤ āϤāĻžāĻĻ⧇āϰ āφāĻŽāĻŋ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāĻŋ āύāĻžāĨ¤
ā§ĢāĨ¤ ā§Ē āĻ¸ā§āĻŸā§‡āĻĒ āĻĢāϞ⧋ āĻ•āϰ⧇ āφāϰāĻž āϟāĻŋāϕ⧇ āĻĨāĻžāϕ⧇ āϤāĻžāϰāĻž āĻ•āĻŋāϛ⧁ āĻ•āĻŋāϛ⧁ āϜāĻžā§ŸāĻ—āĻž āĻĨ⧇āϕ⧇ āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻ•āϞ āĻĒāĻžā§ŸāĨ¤ āĻĒā§āϰāĻžāĻĨāĻŽāĻŋāĻ• āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āϟāĻŋāϕ⧇ āϗ⧇āϞ⧇ āφāĻŽāĻžāϰ āϰ⧇āĻĢāĻžāϰ⧇āĻ¨ā§āϏ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϤ⧇ āφāĻŽāĻŋ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāĻŋāĨ¤ āϏāĻžāϧāĻžāϰāύāϤ āϝāĻžāϰāĻž āĻāχ ā§Ģ āĻ¸ā§āĻŸā§‡āĻĒ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āφāϏ⧇ āϤāĻžāϰāĻž āĻ•āĻ°ā§āĻŽāĻ , āĻŦāĻŋāĻ¨ā§Ÿā§€ āĻāĻŦāĻ‚ āύāĻŋāĻœā§‡āϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰ⧇ āϧāϰāύ⧇āϰ āĻŽāĻžāύ⧁āώ āĻšā§ŸāĨ¤ āĻāχ āϧāϰāύ⧇āϰ āĻŽāĻžāύ⧁āώāĻĻ⧇āϰ āϚāĻžāĻ•āϰāĻŋ āĻšāĻ“ā§ŸāĻž āωāϚāĻŋāϤ āĻāĻŦāĻ‚ āĻŦāĻŋāĻļ⧇āώ āĻ•āϰ⧇ āφāχāϟāĻŋāϤ⧇ āĻšā§ŸāĨ¤
ā§ŦāĨ¤ āϜ⧁āύāĻŋ⧟āϰ āϞ⧇āϭ⧇āϞ⧇āϰ āĻ•āĻžāϰ⧋ āϰāĻŋāϜāĻŋāωāĻŽ āϏāϰāĻžāϏāϰāĻŋ āφāĻŽāĻŋ āĻ•āĻžāωāϕ⧇ āĻĢāϰāĻ“ā§ŸāĻžāĻ°ā§āĻĄ āĻ•āϰāĻŋ āύāĻžāĨ¤
ā§­āĨ¤ āϝāĻžāϰāĻž āĻšā§‡āĻ˛ā§āĻĒ āĻāϰ āϜāĻ¨ā§āϝ āφāĻŽāĻžāϰ āϏāĻžāĻĨ⧇ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰ⧇ āφāĻŽāĻŋ āĻļ⧁āϰ⧁āϤ⧇ āĻŦ⧁āĻāĻžāϰ āĻšā§‡āĻ¸ā§āϟāĻž āĻ•āϰāĻŋ āϤāĻžāϰ āφāϏāϞ⧇āχ āφāĻŽāĻžāϰ āĻšā§‡āĻ˛ā§āĻĒ āϞāĻžāĻ—āĻŦ⧇ āĻ•āĻŋāύāĻžāĨ¤ āϝāĻĻāĻŋ āĻŽāύ⧇ āĻšā§Ÿ āϏ⧇ āύāĻŋāĻœā§‡āχ āφāĻŽāĻžāϰ āĻĨ⧇āϕ⧇ āĻŦ⧇āĻļāĻŋ āĻŦ⧁āĻā§‡ āϤāĻžāϰ⧇ āφāĻŽāĻžāϰ āĻœā§āĻžāĻžāύ āĻĻ⧇āĻ“ā§ŸāĻžāϰ āĻŽāϤ āĻ•āĻŋāϛ⧁ āύāĻžāχ āφāĻŽāĻŋ āϤāĻžāϰ⧇ āĻĒā§āϰāĻĢ⧇āĻļāύāĻžāϞ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāĻž āĻĨ⧇āϕ⧇ āĻŦāĻŋāϰāϤ āĻĨāĻžāĻ•āĻŋāĨ¤
ā§ŽāĨ¤ āϚāĻžāĻ•āϰāĻŋ āĻĻāĻŋā§Ÿā§‡ āĻĻ⧇āĻ“ā§ŸāĻž āφāϏāϞ⧇ āĻŽāĻžāύ⧁āώāϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāĻž āύāĻžāĨ¤ āĻŦāϰāĻ‚ āϤāĻžāϕ⧇ āĻŽāĻžāύāϏāĻŋāĻ• āĻ­āĻžāĻŦ⧇ āĻĒāĻ™ā§āϗ⧁ āĻ•āϰ⧇ āĻĻ⧇āĻ“ā§ŸāĻžāĨ¤ āφāĻŽāĻŋ āύāĻŋāĻœā§‡ āϝ⧇ āϚāĻžāĻ•āϰāĻŋ āĻ•āϰ⧇āĻ›āĻŋāϞāĻžāĻŽ āĻœā§€āĻŦāύ⧇ āĻĒā§āϰāĻĨāĻŽ āĻāĻŦāĻ‚ āĻļ⧇āώ (ā§Ŧ āĻŽāĻžāϏ āĻāϰ āĻŽāϤ) āϏ⧇āχāϟāĻžāϰ āϜāĻ¨ā§āϝ āφāĻŽāĻŋ āύāĻŋāĻœā§‡ āύāĻŋāĻœā§‡āϰ āϰāĻŋāϜāĻŋāωāĻŽ āϞāĻŋāϖ⧇āĻ›āĻŋ, āύāĻŋāĻœā§‡ āύāĻŋāĻœā§‡ āĻĻ⧇āϖ⧇ āĻļ⧁āύ⧇ āĻŦ⧁āĻā§‡ āĻāĻĒā§āϞāĻžāχ āĻ•āϰ⧇āĻ›āĻŋāĨ¤ ā§Ē āϜāĻžā§ŸāĻ—āĻžā§Ÿ āφāĻŽāĻŋ āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻĻāĻŋā§Ÿā§‡āĻ›āĻŋāĨ¤ āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻĻāĻŋāϤ⧇ āϝāĻžāĻŦāĻžāϰ āϜāĻ¨ā§āϝ āĻŽāĻžāύāϏāĻŋāĻ• āĻāĻŦāĻ‚ āĻĒā§‹āĻļāĻžāĻ• āĻĒāϰāĻŋāϧāĻžāύ āĻāϰ āĻŦā§āϝāĻžāĻĒāĻžāϰ⧇ āĻĒā§āϰāĻ¸ā§āϤ⧁āϤāĻŋ āύāĻŋā§Ÿā§‡ āϗ⧇āĻ›āĻŋāĨ¤ āϝ⧇ āϚāĻžāĻ•āϰāĻŋāϟāĻž āφāĻŽāĻŋ āĻ•āϰ⧇āĻ›āĻŋāϞāĻžāĻŽ āϏ⧇āχāϟāĻžāϰ ⧍⧟ āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻāϰ āĻĻāĻŋāύ āφāĻŽāĻžāϰ āĻĒāϰāĻžāϰ āĻŽāϤ āĻļāĻžāĻ°ā§āϟ āĻ›āĻŋāϞ āύāĻžāĨ¤ āĻŽā§ŸāϞāĻž āĻŦāĻž āϰ⧇āĻĄāĻŋ āĻ›āĻŋāϞ āύāĻžāĨ¤ āφāĻŽāĻŋ āϰ⧁āĻŽā§‡āϰ āϜ⧁āύāĻŋ⧟āϰ āĻāϰ āĻļāĻžāĻ°ā§āϟ āĻĒāϰ⧇ āĻ—āĻŋā§Ÿā§‡āĻ›āĻŋāϞāĻžāĻŽ āϏāĻŽā§āĻ­āĻŦāϤāĨ¤
⧝āĨ¤ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇ āĻ…āĻ¨ā§āϝ⧇āϰ āĻ•āĻžāĻ› āĻĨ⧇āϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āύ⧇āĻ“ā§ŸāĻž āĻ­āĻžāϞ⧋āĨ¤ āϤāĻŦ⧇ āύāĻŋāĻœā§‡āϕ⧇ āύāĻŋāĻœā§‡ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āύāĻž āĻ•āϰāĻž āϭ⧁āϞāĨ¤
ā§§ā§ĻāĨ¤ āφāĻŽāĻŋ āĻāϟāĻž āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāϤ⧇ āĻšā§‡āĻ¸ā§āϟāĻž āĻ•āϰāĻŋ āϝ⧇ , ‘āϕ⧇āω āύāĻŋāĻœā§‡ āύāĻŋāĻœā§‡āϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāϤ⧇ āĻļāĻŋāϖ⧁āĻ•’āĨ¤

āϕ⧇āύ āĻ•āĻ–āύāχ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āϕ⧇ āĻĒ⧁āύāϰāĻžāϝāĻŧ āϏāĻ‚āĻœā§āĻžāĻžāϝāĻŧāĻŋāϤ(āϰāĻŋāĻĄāĻŋāĻĢāĻžāχāύ) āĻ•āϰāϤ⧇ āύ⧇āχ

āĻ•āĻ–āύāχ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āϕ⧇ āĻĒ⧁āύāϰāĻžāϝāĻŧ āϏāĻ‚āĻœā§āĻžāĻžāϝāĻŧāĻŋāϤ(āϰāĻŋāĻĄāĻŋāĻĢāĻžāχāύ) āĻ•āϰāϤ⧇ āύ⧇āχāĨ¤ āĻāχ āϧāϰāύ⧇āϰ āĻāĻ•āϟāĻž āϟāĻĒāĻŋāĻ• āφāĻŽāĻŋ āĻŦ⧇āĻļ āφāϗ⧇ āϕ⧋āύ āĻāĻ•āϟāĻž āϟāĻ• āĻļā§‹ āĻŦāĻž āϕ⧋āύ āĻœā§āĻžāĻžāύ⧀ āĻŦā§āϝāĻ•ā§āϤāĻŋāϰ āωāĻĒāĻĻ⧇āĻļ āĻšāĻŋāϏāĻŦ⧇ āĻļ⧁āύ⧇āĻ›āĻŋāϞāĻžāĻŽ āĻŦāĻž āĻĻ⧇āϖ⧇āĻ›āĻŋāϞāĻžāĻŽāĨ¤ āĻŦāĻŋāώ⧟āϟāĻž āĻāχ āϰāĻ•āĻŽāĨ¤

āϧāϰ⧁āύ āφāĻĒāύāĻžāϰ āĻāĻ•āϜāύ āĻŦāωāĻŽāĻž āφāϛ⧇āĨ¤ āĻŦāωāĻŽāĻž āĻŽā§‡ā§Ÿā§‡āϰ āĻŽāϤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŽā§‡ā§Ÿā§‡ āύāĻžāĨ¤ āĻŽā§‡ā§Ÿā§‡ āĻŽā§‡ā§Ÿā§‡, āĻŦāωāĻŽāĻž āĻŦāωāĻŽāĻžāĨ¤ āĻāϰ āĻŦāĻžāχāϰ⧇ āφāĻĒāύāĻŋ āϝāĻ–āύ āĻŦāωāĻŽāĻžāϕ⧇ āĻŽā§‡ā§Ÿā§‡āϰ āĻŽāϤ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāĻŦ⧇āύ āφāĻĒāύāĻŋ āĻĒā§āϝāĻžāϚ āĻŦāĻžāϧāĻžā§Ÿ āĻĢ⧇āϞāĻŦ⧇āύāĨ¤ āφāĻĒāύāĻžāϰ āĻŽā§‡ā§Ÿā§‡ āĻ…āĻ¨ā§āϝ āĻĒāϰāĻŋāĻŦāĻžāϰ⧇ āĻ—āĻŋā§Ÿā§‡ āϝ⧇āĻŽāύ āĻŦāωāĻŽāĻž āĻšā§Ÿ, āϤ⧇āĻŽāύāĻŋ āĻ…āĻ¨ā§āϝ āĻĒāϰāĻŋāĻŦāĻžāϰ⧇āϰ āĻŽā§‡ā§Ÿā§‡ āφāĻĒāύāĻžāϰ āĻĒāϰāĻŋāĻŦāĻžāϰ⧇ āĻāϏ⧇ āĻŦāωāĻŽāĻž āĻšā§Ÿā§‡āϛ⧇āĨ¤ āĻŦāωāĻŽāĻžāϰ āĻ•āĻžāĻ› āĻĨ⧇āϕ⧇ āĻŽā§‡ā§Ÿā§‡āϰ āĻŽāϤ āφāϚāϰāĻŖ āφāĻļāĻž āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āύāĻžāĨ¤ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇āϰ āĻŦāĻŋāĻŦ⧇āϚāύāĻžā§Ÿ āĻļā§āĻŦāĻļ⧁āϰ āĻāĻŦāĻ‚ āĻŦāωāĻŽāĻžāϰ āĻāĻ•āϟāĻž āĻĒāĻžāϰāĻ¸ā§āĻĒāĻžāϰāĻŋāĻ• āĻļā§āĻŦāĻļ⧁āϰ āĻŦāωāĻŽāĻž āφāϚāϰāύ⧇āϰ āĻĢāϰāĻŽā§āϝāĻžāϟ āφāϛ⧇ āϝāĻž āϕ⧋āύ āĻ­āĻžāĻŦ⧇āχ āĻŦāĻžāĻŦāĻž-āĻŽā§‡ā§Ÿā§‡āϰ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āύāĻžāĨ¤ āĻ•āĻžāϰāύ āĻŦāĻžāĻŦāĻž āφāϰ āĻŦāĻžāĻŦāĻž āχāύ āϞ (father in law) āĻāĻ• āύāĻžāĨ¤ āĻŽā§‡ā§Ÿā§‡ āφāϰ āĻĄāϟāĻžāϰ āχāύ āϞ(daughter in law) āĻāĻ• āύāĻžāĨ¤ āϛ⧇āϞ⧇āϰ āĻĄāĻŋāĻ­ā§‹āĻ°ā§āϏ āĻšā§Ÿā§‡ āϗ⧇āϞ⧇ āĻŦāωāĻŽāĻž āφāϰ āĻĄāϟāĻžāϰ āχāύ āϞ āĻĨāĻžāϕ⧇ āύāĻž āĻ•āĻŋāĻ¨ā§āϤ⧁ āφāĻĒāύāĻŋ āϕ⧋āύ āĻ­āĻžāĻŦ⧇āχ āύāĻŋāĻœā§‡āϰ āĻŽā§‡ā§Ÿā§‡āϰ āϏāĻžāĻĨ⧇ āϰāĻ•ā§āϤ⧇āϰ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āĻ›āĻŋāĻ¨ā§āύ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύ āύāĻžāĨ¤

āĻāχ āϰāĻ•āĻŽ āĻŦā§āϰāĻžāĻĻāĻžāϰ āφāϰ āĻŦā§āϰāĻžāĻĻāĻžāϰ āχāύ āϞ, āϏāĻŋāĻ¸ā§āϟāĻžāϰ āφāϰ āϏāĻŋāĻ¸ā§āϟāĻžāϰ āχāύ āϞ, āĻĢāĻžāĻĻāĻžāϰ āφāϰ āĻĢāĻžāĻĻāĻžāϰ āχāύ āϞ, āĻŽāĻžāĻĻāĻžāϰ āφāϰ āĻŽāĻžāĻĻāĻžāϰ āχāύ āϞ āĻāχ āϰāĻ•āĻŽ āϝāϤ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āφāϛ⧇ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻŦāĻŋāĻŦ⧇āĻšā§āϝāĨ¤

āĻ•āĻ–āύāχ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āϕ⧇ āĻĒ⧁āύāϰāĻžāϝāĻŧ āϏāĻ‚āĻœā§āĻžāĻžāϝāĻŧāĻŋāϤ āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āύāĻžāĨ¤

āĻ–āĻŋāĻĻ⧇

āϏāĻ•āĻžāϞ⧇ āĻĻ⧁āĻŸā§‹ āĻĄāĻžāϞ āĻ­āĻžāϤ āĻ–āĻžāĻ“ā§ŸāĻžāϰ āĻŦāĻ¨ā§āĻĻā§‹āĻŦāĻ¸ā§āϤ āĻšāϞāĨ¤ āĻĻāĻžāύāĻž āĻĒāϰāĻžāϰ āĻĒāϰ āĻĒ⧇āĻŸā§‡āϰ āĻŦ⧟āĻžāύāĻŦāĻžāϜāĻŋ āĻŦāĻ¨ā§āϧ āĻšāχāϛ⧇ āφāĻĒāϤāϤāĨ¤ ‘āĻ–āĻŋāĻĻ⧇āϰ āωāĻĒāϰ āϏāĻ¤ā§āϝāĻŋ āĻ•āĻŋāϛ⧁ āύāĻžāχ āĻāχ’ āĻŦāĻžāχāύāĻžāϰāĻŋāϰ āĻœā§€āĻŦāύāϚāĻ•ā§āϰ⧇ āφāϟāϕ⧇āχ āĻĨāĻžāĻ•āϞāĻžāĻŽāĨ¤

āĻ–āĻŋāĻĻ⧇āϰ āφāĻŦāĻžāϰ āϰāĻ•āĻŽāĻĢ⧇āϰ āφāϛ⧇āĨ¤ āϕ⧋āύ āĻ–āĻŋāĻĻ⧇ āĻ…āĻ­ā§āϝ⧁āĻĨāĻžāύ āϘāϟāĻžā§Ÿ, āϕ⧋āύ āĻ–āĻŋāĻĻ⧇ āĻŦāĻŋāĻĒā§āϞāĻŦ⧇āϰ āφāĻļāĻž āϜāĻžāĻ—āĻžā§ŸāĨ¤ āĻĒ⧇āĻŸā§‡āϰ āĻ–āĻŋāĻĻ⧇āϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āĻĻā§‹āϏāϰ āφāϰ ⧍⧟āϟāĻž āύāĻžāχāĨ¤ āĻĒ⧇āĻŸā§‡āϰ āĻ–āĻŋāĻĻ⧇ āϏāĻ•āĻžāϞ āĻšāϞ⧇āχ āĻĢā§āϝāĻžāϏāĻŋāĻ¸ā§āĻŸā§‡āϰ āĻŽāϤ āĻ•āĻžāĻŽā§œā§‡ āϧāϰ⧇ āφāϰ āĻŽāύ⧇āϰ āĻ–āĻŋāĻĻ⧇ āύāĻŋāĻœā§‡āϕ⧇ āĻ•āϰ⧇ āĻ¸ā§āĻŦ⧈āϰāĻžāϚāĻžāϰāĻŋāĨ¤

āĻĒ⧇āĻŸā§‡āϰ āĻ–āĻŋāĻĻ⧇ āφāϰ āĻŽāύ⧇āϰ āĻ–āĻŋāĻĻ⧇āϰ āĻ•āĻŋ āϕ⧋āύ āĻœā§‡āĻ¨ā§āĻĄāĻžāϰ āφāϛ⧇? āĻŽāĻžāύ⧇ āϧāϰ⧇āύ āĻĒ⧇āĻŸā§‡āϰ āĻ–āĻŋāĻĻ⧇ āĻĢāĻŋāĻŽā§‡āϞ āφāϰ āĻŽāύ⧇āϰ āĻ–āĻŋāĻĻ⧇ āĻŽā§‡āϞ āύāĻžāĻ•āĻŋ āĻāϰāĻž āĻœā§‡āĻ¨ā§āĻĄāĻžāϰ āϞ⧇āϏ āĻ•āĻŋāĻ‚āĻŦāĻž āωāϭ⧟āϞāĻŋāĻ™ā§āĻ—āĨ¤

āĻ–āĻŋāĻĻ⧇āϰāĻž āύ⧇āϤāĻžāϰ āĻŽāϤ, āϏāĻ•āĻžāϞ āĻŦāĻŋāĻ•āĻžāϞ āφāĻŽāϰāĻž āĻ–āĻŋāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻĒāĻžāϤāĻŋ āύ⧇āϤāĻžāϰ āĻŽāϤ āĻŽāĻžāĻĨāĻž āĻ¨ā§ā§Ÿā§‡ āĻĒ⧜āĻŋāĨ¤ āύ⧇āϤāĻžāϰ āĻĒ⧇āϟ āĻ­āϰāĻžāύ⧋āϰ āϜāĻ¨ā§āϝ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻŋ āĻĻāĻžāĻĒāĻžāĻĻāĻžāĻĒāĻŋ!